Skip to main content
Log in

Septin C-Terminal Domain Interactions: Implications for Filament Stability and Assembly

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Septins form a conserved family of filament forming GTP binding proteins found in a wide range of eukaryotic cells. They share a common structural architecture consisting of an N-terminal domain, a central GTP binding domain and a C-terminal domain, which is often predicted to adopt a coiled-coil conformation, at least in part. The crystal structure of the human SEPT2/SEPT6/SEPT7 heterocomplex has revealed the importance of the GTP binding domain in filament formation, but surprisingly no electron density was observed for the C-terminal domains and their function remains obscure. The dearth of structural information concerning the C-terminal region has motivated the present study in which the putative C-terminal domains of human SEPT2, SEPT6 and SEPT7 were expressed in E. coli and purified to homogeneity. The thermal stability and secondary structure content of the domains were studied by circular dichroism spectroscopy, and homo- and hetero-interactions were investigated by size exclusion chromatography, chemical cross-linking, analytical ultracentrifugation and surface plasmon resonance. Our results show that SEPT6-C and SEPT7-C are able to form both homo- and heterodimers with a high α-helical content in solution. The heterodimer is elongated and considerably more stable than the homodimers, with a K D of 15.8 nM. On the other hand, the homodimer SEPT2-C has a much lower affinity, with a K D of 4 μM, and a moderate α-helical content. Our findings present the first direct experimental evidence toward better understanding the biophysical properties and coiled-coil pairings of such domains and their potential role in filament assembly and stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

SPR:

Surface plasmon resonance

NTA:

Nitrilotriacetate

IPTG:

Isopropyl-β-d-thiogalactopyranoside

EGS:

Ethylene glycol-bis

SDS/PAGE:

Sodium dodecylsulfate/polyacrylamide gel electrophoresis

EDC:

1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride

NHS:

N-hydroxysuccinimide

SEC:

Size exclusion chromatography

References

  1. Hartwell, L. H. (1971). Genetic control of the cell division cycle in yeast. IV. Genes controlling bud emergence and cytokinesis. Experimental Cell Research, 69, 265–276.

    Article  PubMed  CAS  Google Scholar 

  2. Cao, L., Ding, X., Yu, W., Yang, X., Shen, S., & Yu, L. (2007). Phylogenetic and evolutionary analysis of the septin protein family in metazoan. FEBS Letters, 581, 5526–5532.

    Article  PubMed  CAS  Google Scholar 

  3. Pan, F., Malmberg, R. L., & Momany, M. (2007). Analysis of septins across kingdoms reveals orthology and new motifs. BMC Evolutionary Biology, 7, 103.

    Article  PubMed  CAS  Google Scholar 

  4. Kartmann, B., & Roth, D. (2001). Novel roles for mammalian septins: From vesicle trafficking to oncogenesis. Journal of Cell Science, 114, 839–844.

    PubMed  CAS  Google Scholar 

  5. Hsu, S. C., Hazuka, C. D., Roth, R., Foletti, D. L., Heuser, J., & Scheller, R. H. (1998). Subunit composition, protein interactions, and structures of the mammalian brain sec6/8 complex and septin filaments. Neuron, 20, 1111–1122.

    Article  PubMed  CAS  Google Scholar 

  6. Shcheprova, Z., Baldi, S., Frei, S. B., Gonnet, G., & Barral, Y. (2008). A mechanism for asymmetric segregation of age during yeast budding. Nature, 454, 728–734.

    PubMed  CAS  Google Scholar 

  7. Spiliotis, E. T., Kinoshita, M., & Nelson, W. J. (2005). A mitotic septin scaffold required for Mammalian chromosome congression and segregation. Science, 307, 1781–1785.

    Article  PubMed  CAS  Google Scholar 

  8. Tooley, A. J., Gilden, J., Jacobelli, J., Beemiller, P., Trimble, W. S., Kinoshita, M., et al. (2009). Amoeboid T lymphocytes require the septin cytoskeleton for cortical integrity and persistent motility. Nature Cell Biology, 11, 17–26.

    Article  PubMed  CAS  Google Scholar 

  9. Weirich, C. S., Erzberger, J. P., & Barral, Y. (2008). The septin family of GTPases: Architecture and dynamics. Nature Reviews Molecular Cell Biology, 9, 478–489.

    Article  PubMed  CAS  Google Scholar 

  10. Ihara, M., Tomimoto, H., Kitayama, H., Morioka, Y., Akigunchi, I., Shibasaki, H., et al. (2003). Association of the cytoskeletal GTP-binding protein Sept4/H5 with cytoplasmatic inclusions found in Parkinson’s disease and others synucleinopathies. The Journal of Biological Chemistry, 278, 24012–24095.

    Article  Google Scholar 

  11. Hall, P. A., & Russell, S. E. (2004). The pathobiology of the septin gene family. The Journal of Pathology, 204, 489–505.

    Article  PubMed  CAS  Google Scholar 

  12. Mostowy, S., Nam Tham, T., Danckaert, A., Guadagnini, S., Boisson-Dupuis, S., Pizarro-Cerdá, J., et al. (2009). Septins regulate bacterial entry into host cells. PLoS One, 4, e4196.

    Article  PubMed  Google Scholar 

  13. Tanaka, M., Tanaka, T., Kijima, H., Itoh, J., Matsuda, T., Hori, S., et al. (2001). Characterization of tissue- and cell-type-specific expression of a novel human septin family gene, Bradeion. Biochemical and Biophysical Research Communications, 286, 547–553.

    Article  PubMed  CAS  Google Scholar 

  14. Garcia, W., de Araújo, A. P., Neto, Mde. O., Ballestero, M. R., Polikarpov, I., Tanaka, M., et al. (2006). Dissection of a human septin: definition and characterization of distinct domains within human SEPT4. Biochemistry, 45, 13918–13931.

    Article  PubMed  CAS  Google Scholar 

  15. Kinoshita, M. (2003). Assembly of mammalian septins. The Journal of Biochemistry, 134, 491–496.

    Article  CAS  Google Scholar 

  16. Kinoshita, M. (2003). The septins. Genome Biology, 4, 236.

    Article  PubMed  Google Scholar 

  17. Field, C. M., al-Awar, O., Rosenblatt, J., Wong, M. L., Alberts, B., & Mitchison, T. J. (1996). A purified Drosophila septin complex forms filaments and exhibits GTPase activity. The Journal of Cell Biology, 133, 605–616.

    Article  PubMed  CAS  Google Scholar 

  18. Sirajuddin, M., Farkasovsky, M., Hauer, F., Kühlmann, D., Macara, I. G., Weyand, M., et al. (2007). Structural insight into filament formation by mammalian septins. Nature, 449, 311–315.

    Article  PubMed  CAS  Google Scholar 

  19. Sheffield, P. J., Oliver, C. J., Kremer, B. E., Sheng, S., Shao, Z., & Macara, I. G. (2003). Borg/septin interactions and the assembly of mammalian septin heterodimers, trimers, and filaments. The Journal of Biological Chemistry, 278, 3483–3488.

    Article  PubMed  CAS  Google Scholar 

  20. Nagata, K., Asano, T., Nozawa, Y., & Inagaki, M. (2004). Biochemical and cell biological analyses of a mammalian septin complex, Sept7/9b/11. The Journal of Biological Chemistry, 279, 55895–55904.

    Article  PubMed  CAS  Google Scholar 

  21. Fujishima, K., Kiyonari, H., Kurisu, J., Hirano, T., & Kengaku, M. (2007). Targeted disruption of Sept3, a heteromeric assembly partner of Sept5 and Sept7 in axons, has no effect on developing CNS neurons. Journal of Neurochemistry, 102, 77–92.

    Article  PubMed  CAS  Google Scholar 

  22. Zhang, J., Kong, C., Xie, H., McPherson, P. S., Grinstein, S., & Trimble, W. S. (1999). Phosphatidylinositol polyphosphate binding to the mammalian septin H5 is modulated by GTP. Current Biology, 9, 1458–1467.

    Article  PubMed  CAS  Google Scholar 

  23. Hillebrand, S., Garcia, W., Delmar Cantú, M., de Araújo, A. P., Tanaka, M., Tanaka, T., et al. (2005). In vitro monitoring of GTPase activity and enzyme kinetics studies using capillary electrophoresis. Analytical and Bioanalytical Chemistry, 383, 92–97.

    Article  PubMed  CAS  Google Scholar 

  24. Nagaraj, S., Rajendran, A., Jackson, C. E., & Longtine, M. S. (2008). Role of nucleotide binding in septin–septin interactions and septin localization in Saccharomyces cerevisiae. Molecular and Cellular Biology, 28, 5120–5137.

    Article  PubMed  CAS  Google Scholar 

  25. Sirajuddin, M., Farkasovsky, M., Zent, E., & Wittinghofer, A. (2009). GTP-induced conformational changes in septins and implications for function. Proceedings of the National Academy of Sciences of the United States of America, 106, 16592–16597.

    Article  PubMed  CAS  Google Scholar 

  26. Lupas, A., Van Dyke, M., & Stock, J. (1991). Predicting coiled-coils from protein sequences. Science, 252, 1162–1164.

    Article  CAS  Google Scholar 

  27. Wolf, E., Kim, P. S., & Berger, B. (1997). MultiCoil: A program for predicting two- and three-stranded coiled-coils. Protein Science, 6, 1179–1189.

    Article  PubMed  CAS  Google Scholar 

  28. Barth, P., Schoeffler, A., & Alber, T. (2008). Targeting metastable coiled-coil domains by computational design. Journal of the American Chemical Society, 130, 12038–12044.

    Article  PubMed  CAS  Google Scholar 

  29. Shinoda, T., Ito, H., Sudo, K., Iwamoto, I., Morishita, R., & Nagata, K. (2010). Septin 14 is involved in cortical neuronal migration via interaction with septin 4. Molecular Biology of the Cell, 21, 1324–1334.

    Article  PubMed  CAS  Google Scholar 

  30. Low, C., & Macara, I. G. (2006). Structural analysis of septin 2, 6, and 7 complexes. The Journal of Biological Chemistry, 281, 30697–30706.

    Article  PubMed  CAS  Google Scholar 

  31. Bertin, A., McMurray, M. A., Grob, P., Park, S. S., Garcia, G., 3rd, Patanwala, I., et al. (2008). Saccharomyces cerevisiae septins: supramolecular organization of heterooligomers and the mechanism of filament assembly. Proceedings of the National Academy of Sciences of the United States of America, 105, 8274–8279.

    Article  PubMed  CAS  Google Scholar 

  32. Sanger, F., Nicklen, S., & Coulson, R. (1977). DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 74, 5463–5467.

    Article  PubMed  CAS  Google Scholar 

  33. Gill, S. C., & von Hippel, P. H. (1989). Calculation of proteins extinction coefficients from amino acid sequence data. Analytical Biochemistry, 182, 319–326.

    Article  PubMed  CAS  Google Scholar 

  34. Sreerama, N., & Woody, R. W. (2000). Estimation of protein secondary structure from circular dichroism spectra: Comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Analytical Biochemistry, 287, 252–260.

    Article  PubMed  CAS  Google Scholar 

  35. Valadares, N. F., Polikarpov, I., & Garratt, R. C. (2008). Ligand induced interaction of thyroid hormone receptor beta with its coregulators. The Journal of Steroid Biochemistry and Molecular Biology, 112, 205–212.

    Article  PubMed  CAS  Google Scholar 

  36. Myszka, D. G. (1999). Improving biosensor analysis. Journal of Molecular Recognition, 12, 279–284.

    Article  PubMed  CAS  Google Scholar 

  37. Schuck, P., Perugini, M. A., Gonzales, N. R., Howlett, G. J., & Schubert, D. (2002). Size-distribution analysis of proteins by analytical ultracentrifugation: strategies and applications to model systems. Biophysical Journal, 82, 1096–1111.

    Article  PubMed  CAS  Google Scholar 

  38. Laue, T. M., Shah, B. D., Ridgeway, T. M., & Pelletier, S. L. (1992). Computer-aided interpretation of analytical sedimentation data for proteins. In S. E. Harding, H. C. Horton, & A. J. Rowe (Eds.), Analytical ultracentrifugation in biochemistry and polymer science (pp. 90–125). London, UK: Royal Society of Chemistry.

    Google Scholar 

  39. Cole, J. L. (2004). Analysis of heterogeneous interactions. Methods in Enzymology, 384, 212–232.

    Article  PubMed  CAS  Google Scholar 

  40. Cooper, T. M., & Woody, R. W. (1990). The effect of conformation on the CD of interacting helices: a theoretical study of tropomyosin. Biopolymers, 30, 657–676.

    Article  PubMed  CAS  Google Scholar 

  41. Rich, R. L., & Myszka, D. G. (2007). Survey of the year 2006 commercial biosensor literature. Journal of Molecular Recognition, 20, 300–366.

    Article  PubMed  CAS  Google Scholar 

  42. John, C. M., Hite, R. K., Weirich, C. S., Fitzgerald, D. J., Jawhari, H., Faty, M., et al. (2007). The Caenorhabditis elegans septin complex is nonpolar. The EMBO Journal, 26, 3296–3307.

    Article  PubMed  CAS  Google Scholar 

  43. Nakahira, M., Macedo, J. N. A., Seraphim, T. V., Cavalcante, N., Souza, T. A. C. B., Damalio, J. C. P., et al. (2010). A draft of the human septin interactome. PLoS One, 5, e13799.

    Article  PubMed  Google Scholar 

  44. Bertin, A., McMurray, M. A., Thai, L., Garcia, G., I. I. I., Votin, V., Grob, P., et al. (2010). Phosphatidylinositol-4, 5-bisphosphate promotes budding yeast septin filament assembly and organization. The Journal of Biological Chemistry, 404, 711–731.

    CAS  Google Scholar 

  45. Zhu, M., Wang, F., Yan, F., Yao, P. Y., Du, J., Gao, X., et al. (2008). Septin 7 interacts with centromere-associated protein E and is required for its kinetochore localization. The Journal of Biological Chemistry, 283, 18916–18925.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support of FAPESP (via its CEPID program to the Centro de Biotecnologia Molecular Estrutural) and CNPq (via the INCT initiative). This work was further supported by a collaborative CSIC-CNPq grant for international exchange awarded to JMA and RCG as well as by grant MCINN BFU2008-00013 to JMA. IAM received a CAPES studentship and NFV, WG, JCPD and JNAM held bursaries from FAPESP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Charles Garratt.

Additional information

Ivo de Almeida Marques and Napoleão Fonseca Valadares contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 9532 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Almeida Marques, I., Valadares, N.F., Garcia, W. et al. Septin C-Terminal Domain Interactions: Implications for Filament Stability and Assembly. Cell Biochem Biophys 62, 317–328 (2012). https://doi.org/10.1007/s12013-011-9307-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-011-9307-0

Keywords

Navigation