Skip to main content
Log in

Elevated Levels of Oxidized Low-Density Lipoprotein Correlate Positively with C-Reactive Protein in Patients with Acute Coronary Syndrome

  • Translational Biomedical Research
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The relationship between oxidized low-density lipoprotein (Ox-LDL) and C-reactive protein (CRP) in patients with acute coronary syndrome (ACS) is unknown. We, therefore, measured serum levels of Ox-LDL and high-sensitivity (hs)-CRP in 90 ACS patients, 45 stable angina pectoris (SAP) patients, and 66 healthy controls using sandwich ELISA. ACS patients were subdivided into: (1) acute myocardial infarction (AMI; n = 45); (2) unstable angina pectoris (UAP; n = 45) groups. In AMI patients, Ox-LDL (177.5 mmol/l) and hs-CRP (25.40 mg/l) levels were significantly higher (P < 0.01) than in UAP (Ox-LDL:107.5 mmol/l, hs-CRP:10.7 mg/l) and SAP (Ox-LDL:82.3 mmol/l, hs-CRP:2.10 mg/l) patients as well as controls (Ox-LDL:41.4 mmol/l, hs-CRP:1.76 mg/l). Ox-LDL/hs-CRP levels in UAP patients were significantly higher (P < 0.01) than in SAP patients and controls. Importantly, a positive correlation was found between Ox-LDL and CRP (r = 0.622; P < 0.01) levels. Serum levels of total, HDL, and LDL cholesterol did not differ among these patient groups. In conclusion, our data show that Ox-LDL and hs-CRP levels correlate positively in ACS patients, supporting the hypothesis that Ox-LDL and CRP may play a direct role in promoting the inflammatory component of atherosclerosis in these individuals. We suggest that Ox-LDL/CRP elevated levels may serve as markers of the severity of the disease in evaluation and management of ACS patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Patel, P. D., & Arora, R. R. (2010). Practical implications of ACC/AHA 2007 Guidelines for the Management of Unstable Angina/Non-ST Elevation Myocardial Infarction. American Journal of Therapeutics, 17, e24–e40.

    Article  PubMed  Google Scholar 

  2. Cameron, J. S. (1999). Lupus nephritis. Journal of the American Society of Nephrology, 10, 413–424.

    PubMed  CAS  Google Scholar 

  3. Burke, A. P., Farb, A., & Malcom, G. T. (1997). Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. The New England Journal of Medicine, 336, 1276–1282.

    Article  PubMed  CAS  Google Scholar 

  4. Fuster, V., & Lewis, A. (1994). Conner memorial lecture. Mechanisms leading to myocardial infarction: Insights from studies of vascular biology. Circulation, 90, 2126–2146.

    PubMed  CAS  Google Scholar 

  5. Ross, R. (1999). Atherosclerosis: An inflammatory disease. The New England Journal of Medicine, 340, 115–126.

    Article  PubMed  CAS  Google Scholar 

  6. Fuster, V., Fayad, Z. A., & Badimon, J. J. (1999). Acute coronary syndromes: Biology. Lancet, 353, SII5–SII9.

    Article  PubMed  Google Scholar 

  7. Lindmark, E., Diderholm, E., Wallentin, L., & Siegbahn, A. (2001). Relationship between interleukin 6 and mortality in patients with unstable coronary artery disease: Effects of an early invasive or noninvasive strategy. The Journal of the American Medical Association, 286, 2107–2113.

    Article  CAS  Google Scholar 

  8. Marathe, G. K., Prescott, S. M., Zimmerman, G. A., & McIntyre, T. M. (2001). Oxidized LDL contains inflammatory PAF-like phospholipids. Trends in Cardiovascular Medicine, 11, 139–142.

    Article  PubMed  CAS  Google Scholar 

  9. Inoue, T., Uchida, T., Kamishirado, H., Takaya-nagi, K., Hayashi, T., & Morooka, S. (2001). Clinical significance of antibody against oxidized low density lipoprotein in patients with atherosclerotic coronary artery disease. Journal of the American College of Cardiology, 37, 775–779.

    Article  PubMed  CAS  Google Scholar 

  10. Holvoet, P., Vanhaecke, J., Janssens, S., Van de Werf, F., & Collen, D. (1998). Oxidized LDL and malondialdehyde-modified LDL in patients with acute coronary syndromes and stable coronary artery disease. Circulation, 98, 1487–1494.

    PubMed  CAS  Google Scholar 

  11. Toshima, S., Hasegawa, A., Kurabayashi, M., et al. (2000). Circulating oxidized low density lipoprotein levels: A biochemical risk marker for coronary heart disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 20, 2243–2247.

    Article  PubMed  CAS  Google Scholar 

  12. Witztum, J. L., & Steinberg, D. (1991). Role of oxidized low density lipoprotein in atherogenesis. Journal of Clinical Investigation, 88, 1785–1792.

    Article  PubMed  CAS  Google Scholar 

  13. Ylä-Herttuala, S., Palinski, W., Rosenfeld, M. E., et al. (1989). Evidence for the presence of oxidatively modified low density lipoprotein in atherosclerotic lesions of rabbit and man. Journal of Clinical Investigation, 84, 1086–1095.

    Article  PubMed  Google Scholar 

  14. Palinski, W., Rosenfeld, M. E., Ylä-Herttuala, S., et al. (1989). Low density lipoprotein undergoes oxidative modification in vivo. Proceedings of the National Academy of Sciences of the United States of America, 86, 1372–1376.

    Article  PubMed  CAS  Google Scholar 

  15. Salonen, J. T., Ylä-Herttuala, S., Yamamoto, R., et al. (1992). Autoantibody against oxidized LDL and progression of carotid atherosclerosis. Lancet, 339, 883–887.

    Article  PubMed  CAS  Google Scholar 

  16. Haverkate, F., Thompson, S. G., Pyke, S. D. M., Gallimore, J. R., Pepys, M. B. & for the European Concerted Action on Thrombosis and Disabilities Angina Pectoris Study Group. (1997). Production of C-reactive protein and risk of coronary events in stable and unstable angina. Lancet, 349, 462–466.

    Google Scholar 

  17. Koenig, W. (1999). Atherosclerosis involves more than just lipids: Focus on inflammation. European Heart Journal, Suppl1, T19–T26.

    Google Scholar 

  18. Willerson, J. T., & Ridker, P. M. (2004). Inflammation as a cardiovascular risk factor. Circulation, 109(21 Suppl 1), II2–II10.

    PubMed  Google Scholar 

  19. Ridker, P. M., Fonseca, F. A., Genest, J., et al. & JUPITER Trial Study Group. (2007). Baseline characteristics of participants in the JUPITER trial, a randomized placebo-controlled primary prevention trial of statin therapy among individuals with low low-density lipoprotein cholesterol and elevated high-sensitivity C-reactive protein. American Journal of Cardiology, 100, 1659–1664.

    Google Scholar 

  20. Pietil, K. O., Harmoinen, A. P., Jokiniitty, J., & Pasternack, A. I. (1996). Serum C-reactive protein concentration in acute myocardial infarction and its relationship to mortality during 24 months of follow-up in patients under thrombolytic treatment. European Heart Journal, 17, 1345–1349.

    Google Scholar 

  21. De Winter, R. J., Fischer, J., Bholasingh, R., et al. (2000). C-reactive protein and cardiac troponin T in risk stratification: Differences in optimal timing of tests early after the onset of chest pain. Clinical Chemistry, 46, 1597–1603.

    PubMed  Google Scholar 

  22. Moukarbel, G. V., Arnaout, M. S., & Alam, S. E. (2001). C-reactive protein is a marker for a complex culprit lesion anatomy in unstable angina. Clinical Cardiology, 24, 506–510.

    Article  PubMed  CAS  Google Scholar 

  23. Tabuchi, M., Inoue, K., Usui-Kataoka, H., et al. (2007). The association of C-reactive protein with an oxidative metabolite of LDL and its implication in atherosclerosis. Journal of Lipid Research, 48, 768–781.

    Article  PubMed  CAS  Google Scholar 

  24. Witztum, J. L., & Berliner, J. A. (1998). Oxidized phospholipids and isoprostanes in atherosclerosis. Current Opinion in Lipidology, 9, 441–448.

    Article  PubMed  CAS  Google Scholar 

  25. Chobanian, A. V., Bakris, G. L., Black H. R., et al. & the National High Blood Pressure Education Program Coordinating Committee. (2003). The Seventh report of the Joint National Committee on detection, evaluation and treatment of high blood pressure (The JNC 7 Report). The Journal of the American Medical Association, 289, 2560–2571.

    Google Scholar 

  26. WHO Study Group. (1985). Diabetes mellitus. World Health Organization Technical Report Series, 727, 7–98.

    Google Scholar 

  27. Mancini, G. B., Simon, S. B., McGillem, M. J., et al. (1987). Automated quantitative coronary arteriography: Morphologic and physiologic validation in vivo of a rapid digital angiographic method. Circulation, 75, 452–460.

    Article  PubMed  CAS  Google Scholar 

  28. National Heart, Lung, and Blood Institute Coronary Artery Surgery Study. (1981). A multicenter comparison of the effects of randomized medical and surgical treatment of mildly symptomatic patients with coronary artery disease and a registry of consecutive patients undergoing coronary angiography. Circulation, 63, I1–I81.

    Google Scholar 

  29. Itabe, H., Yamamoto, H., Imanaka, T., et al. (1996). Sensitive detection of oxidatively modified low density lipoprotein using a monoclonal antibody. Journal of Lipid Research, 37, 45–53.

    PubMed  CAS  Google Scholar 

  30. Li, D., William, V., & Liu, L. (2003). Expression of lectin-like oxidized low-density lipoprotein receptors during ischemia-reperfusion and its role in determination of apoptosis and left ventricular dysfunction. Journal of the American College of Cardiology, 41, 1055–1084.

    Google Scholar 

  31. Heinecke, J. W. (2006). Lipoprotein oxidation in cardiovascular disease: Chief culprit or innocent bystander. Journal of Experimental Medicine, 203, 813–816.

    Article  PubMed  CAS  Google Scholar 

  32. Ehara, S., Ueda, M., & Naruko, T. (2001). Elevated levels of oxidized low density lipoprotein show a positive relationship with the severity of acute coronary syndromes. Circulation, 103, 1955–1960.

    PubMed  CAS  Google Scholar 

  33. Tsimikas, S., Bergmark, C., Beyer, R. W., et al. (2003). Temporal increases in plasma markers of oxidized low-density lipoprotein strongly reflect the presence of acute coronary syndrome. Journal of the American College of Cardiology, 41, 360–370.

    Article  PubMed  CAS  Google Scholar 

  34. Fraley, A. E., & Tsinikas, S. (2006). Clinical applications of circulating oxidized low-density lipoprotein biomarkers in cardiovascular disease. Current Opinion in Lipidology, 17, 502–509.

    Article  PubMed  CAS  Google Scholar 

  35. Pasceri, V., Willerson, J. T., & Yeh, E. T. (2000). Direct proinflammatory effect of C-reactive protein on human endothelial cells. Circulation, 102, 2165–2168.

    PubMed  CAS  Google Scholar 

  36. Torzewski, J., Torzewski, M., Bowyer, D. E., et al. (1998). C-reactive protein frequently colocalizes with the terminal complement complex in the intima of early atherosclerotic lesions of human coronary arteries. Arteriosclerosis, Thrombosis, and Vascular Biology, 18, 1386–1392.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Shanghai Jiaotong Medical University for financial support (Grant # 09XJ21046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya-chen Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Yc., Wei, Jj., Wang, F. et al. Elevated Levels of Oxidized Low-Density Lipoprotein Correlate Positively with C-Reactive Protein in Patients with Acute Coronary Syndrome. Cell Biochem Biophys 62, 365–372 (2012). https://doi.org/10.1007/s12013-011-9295-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-011-9295-0

Keywords

Navigation