Skip to main content

Advertisement

Log in

Protein Microarrays for the Identification of Praja1 E3 Ubiquitin Ligase Substrates

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Although they are the primary determinants of substrate specificity, few E3-substrate pairs have been positively identified, and few E3’s profiled in a proteomic fashion. Praja1 is an E3 implicated in bone development and highly expressed in brain. Although it has been well studied relative to the majority of E3’s, little is known concerning the repertoire of proteins it ubiquitylates. We sought to identify high confidence substrates for Praja1 from an unbiased proteomic profile of thousands of human proteins using protein microarrays. We first profiled Praja1 activity against a panel of E2’s to identify its optimal partner in vitro. We then ubiquitylated multiple, identical protein arrays and detected putative substrates with reagents that vary in ubiquitin recognition according to the extent of chain formation. Gene ontology clustering identified putative substrates consistent with information previously known about Praja1 function, and provides clues into novel aspects of this enzyme’s function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Li, W., Bengtson, M. H., Ulbrich, A., Matsuda, A., Reddy, V. A., Orth, A., et al. (2008). Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle’s dynamics and signaling. PLoS One, 3, e1487.

    Article  PubMed  Google Scholar 

  2. Marblestone, J. G., Kumar, K. G., Eddins, M. J., Leach, C. A., Sterner, D. E., Sterner, M. R., et al. (2010). Novel Approach for Characterizing Ubiquitin E3 Ligase Function. Journal of Biomolecular Screening, 15, 1220–1228.

    Article  PubMed  CAS  Google Scholar 

  3. Sowa, M. E., Bennett, E. J., Gygi, S. P., & Harper, J. W. (2009). Defining the human deubiquitinating enzyme interaction landscape. Cell, 138, 389–403.

    Article  PubMed  CAS  Google Scholar 

  4. Nijman, S. M., Luna-Vargas, M. P., Velds, A., Brummelkamp, T. R., Dirac, A. M., Sixma, T. K., et al. (2005). A genomic and functional inventory of deubiquitinating enzymes. Cell, 123, 773–786.

    Article  PubMed  CAS  Google Scholar 

  5. Todi, S. V., Winborn, B. J., Scaglione, K. M., Blount, J. R., Travis, S. M., & Paulson, H. L. (2009). Ubiquitination directly enhances activity of the deubiquitinating enzyme ataxin-3. EMBO Journal, 28, 372–382.

    Article  PubMed  CAS  Google Scholar 

  6. Chen, Z. J., & Sun, L. J. (2009). Nonproteolytic functions of ubiquitin in cell signaling. Molecular Cell, 33, 275–286.

    Article  PubMed  CAS  Google Scholar 

  7. Haglund, K., & Dikic, I. (2005). Ubiquitylation and cell signaling. EMBO Journal, 24, 3353–3359.

    Article  PubMed  CAS  Google Scholar 

  8. Grabbe, C., & Dikic, I. (2009). Functional roles of ubiquitin-like domain (ULD) and ubiquitin-binding domain (UBD) containing proteins. Chemical Reviews, 109, 1481–1494.

    Article  PubMed  CAS  Google Scholar 

  9. Weake, V. M., & Workman, J. L. (2008). Histone ubiquitination: triggering gene activity. Molecular Cell, 29, 653–663.

    Article  PubMed  CAS  Google Scholar 

  10. Sigismund, S., Polo, S., & Di Fiore, P. P. (2004). Signaling through monoubiquitination. Current Topics in Microbiology and Immunology, 286, 149–185.

    PubMed  CAS  Google Scholar 

  11. Huang, T. T., & DAndrea, A. D. (2006). Regulation of DNA repair by ubiquitylation. Nature Reviews Molecular Cell Biology, 7, 323–334.

    Article  PubMed  CAS  Google Scholar 

  12. Hochstrasser, M. (2009). Origin and function of ubiquitin-like protein conjugation. Nature, 458, 422–429.

    Article  PubMed  CAS  Google Scholar 

  13. Lee, D. H., & Goldberg, A. L. (1998). Proteasome inhibitors: valuable new tools for cell biologists. Trends in Cell Biology, 8, 397–403.

    Article  PubMed  CAS  Google Scholar 

  14. Deretic, V. (2010). Autophagy in infection. Current Opinion in Cell Biology, 22, 252–262.

    Article  PubMed  CAS  Google Scholar 

  15. Skaug, B., & Chen, Z. J. (2010). Emerging role of ISG15 in antiviral immunity. Cell, 143, 187–190.

    Article  PubMed  CAS  Google Scholar 

  16. Turnbull, E. L., Rosser, M. F., & Cyr, D. M. (2007). The role of the UPS in cystic fibrosis. BMC Biochemistry, 8(Suppl1), S11–S20.

    Article  PubMed  Google Scholar 

  17. Attaix, D., Ventadour, S., Codran, A., Béchet, D., Taillandier, D., & Combaret, L. (2005). The ubiquitin–proteasome system and skeletal muscle wasting. Essays Biochem, 41, 173–186.

    Article  PubMed  CAS  Google Scholar 

  18. Debigare, R., Cote, C. H., & Maltais, F. (2010). Ubiquitination and proteolysis in limb and respiratory muscles of patients with chronic obstructive pulmonary disease. Proceedings of the American Thoracic Society, 7, 84–90.

    Article  PubMed  Google Scholar 

  19. Rogers, N., Paine, S., Bedford, L., & Layfield, R. (2010). Review: the ubiquitin proteasome system: contributions to cell death or survival in neurodegeneration. Neuropathology and Applied Neurobiology, 36, 113–124.

    PubMed  CAS  Google Scholar 

  20. Nicholson, B., Marblestone, J. G., Butt, T. R., & Mattern, M. R. (2007). Deubiquitinating enzymes as novel anticancer targets. Future Oncology, 3, 191–199.

    Article  PubMed  CAS  Google Scholar 

  21. Stork, O., Stork, S., Pape, H. C., & Obata, K. (2001). Identification of genes expressed in the amygdale during the formation of fear memory. Learning and Memory, 8, 209–219.

    Article  PubMed  CAS  Google Scholar 

  22. Mishra, L., Tully, R. E., Monga, S. P., Yu, P., Cai, T., Makalowski, W., et al. (1997). Praja1, a novel gene encoding a RING-H2 motif in mouse development. Oncogene, 15, 2361–2368.

    Article  PubMed  CAS  Google Scholar 

  23. Yoon, W. J., Cho, Y. D., Cho, K. H., Woo, K. M., Baek, J. H., Cho, J. Y., et al. (2008). The Boston-type craniosynostosis mutation MSX2 (P148H) results in enhanced susceptibility of MSX2 to ubiquitin-dependent degradation. The Journal of Biological Chemistry, 283, 32751–32752.

    Article  PubMed  CAS  Google Scholar 

  24. Yu, P., Chen, Y., Tagle, D. A., & Cai, T. (2002). PJA1, encoding a RING-H2 finger ubiquitin ligase, is a novel human X chromosome gene abundantly expressed in brain. Genomics, 79, 869–874.

    Article  PubMed  CAS  Google Scholar 

  25. Sasaki, A., Masuda, Y., Iwai, K., Ikeda, K., & Wantanabe, K. (2002). A RING finger protein Praja1 regulates Dlx5-dependent transcription through its ubiquitin ligase activity for the Dlx/Msx-interacting MAGE/Necdin family protein, Dlxin-1. The Journal of Biological Chemistry, 277, 22541–22546.

    Article  PubMed  CAS  Google Scholar 

  26. Doyle, J. M., Gao, J., Wang, J., Yang, M., & Potts, P. R. (2010). MAGE-RING protein complexes comprise a family of E3 ubiquitin ligases. Molecular Cell, 39, 963–974.

    Article  PubMed  CAS  Google Scholar 

  27. Lu, J., Lin, Y., Qian, J., Tao, S., Zhu, J., Pickart, C., et al. (2008). Functional dissection of a HECT ubiquitin E3 ligase. Molecular and Cellular Proteomics, 7(1), 35–45.

    Article  PubMed  CAS  Google Scholar 

  28. Andrews, P. S., Schneider, S., Yang, E., Michaels, M., Chen, H., Tang, J., et al. (2010). Identification of substrates of Smurf1 ubiquitin ligase activity utilizing protein microarrays. Assay and Drug Development, 8, 471–487.

    Article  CAS  Google Scholar 

  29. Gupta, R., Kus, B., Fladd, C., Wasmuth, J., Tonikian, R., Sidhu, S., et al. (2007). Ubiquitination screen using protein microarrays for comprehensive identification of Rsp5 substrates in yeast. Molecular Systems Biology, 3, 116.

    Article  PubMed  Google Scholar 

  30. Balut, C. M., Loch, C. M., Gao, Y., Devor, D. Role of ubiquitination and Usp8 (UBPY)-dependent deubiquitination in the endocytosis and lysosomal targeting of plasma membrane KCa3.1 (submitted).

  31. Shi, Y., Chan, D. W., Jung, S. Y., Malovannaya, A., Wang, Y., Qin, J. (2010). A dataset of human endogenous protein ubiquitination sites. Molecular and Cellular Proteomics. doi:10.1074/mcp.M110.002089.

  32. Meierhofer, D., Wang, X., Huang, L., & Kaiser, P. (2008). Quantitative analysis of global ubiquitination in HeLa cells by mass spectrometry. Journal of Proteome Research, 7, 4566–4576.

    Article  PubMed  CAS  Google Scholar 

  33. Xu, P., Duong, D., Seyfried, N., Cheng, D., Xie, Y., Robert, J., et al. (2009). Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell, 137, 133–145.

    Article  PubMed  CAS  Google Scholar 

  34. Beissbarth, T., & Speed, T. P. (2004). GOstat: Find statistically overrepresented gene ontologies within a group of genes. Bioinformatics, 20, 1464–1465.

    Article  PubMed  CAS  Google Scholar 

  35. Benjamini, V., & Hochberg, V. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society B, 57, 289–300.

    Google Scholar 

  36. Loch, C. M., Ramirez, A. B., Liu, Y., Sather, C. L., Delrow, J. J., Scholler, N., et al. (2007). Use of high density antibody arrays to validate and discover cancer serum biomarkers. Molecular Oncology, 1, 313–320.

    Article  PubMed  Google Scholar 

  37. Wada, K., & Kamitani, T. (2006). UnpEL/USP4 is ubiquitinated by Ro52 and deubiquitinated by itself. Biochemical and Biophysical Research Communications, 342, 253–258.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian M. Loch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loch, C.M., Eddins, M.J. & Strickler, J.E. Protein Microarrays for the Identification of Praja1 E3 Ubiquitin Ligase Substrates. Cell Biochem Biophys 60, 127–135 (2011). https://doi.org/10.1007/s12013-011-9180-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-011-9180-x

Keywords

Navigation