Skip to main content
Log in

Cation Modulation of Hemoglobin Interaction with Sodium n-Dodecyl Sulfate (SDS). I: Calcium Modulation at pH 7.20

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

A comparative denaturation of HbA and HbS in the R states using sodium n-dodecyl sulfate (SDS) was carried out at pH 7.20 in the presence and absence of Calcium (0–40 μM) and monitored by UV–Vis spectrophotometry in the range of 250–650 nm. In the HbS spectra, the calcium alone caused little or no perturbation of the aromatic region but caused a decrease in oxygen affinity when compared to the HbA. The combinations of [SDS] and [Ca] perturbed the HbS the most, relative to the individual spectra of the [SDS] and [Ca]. However, the presence of Ca appeared to diminish the adverse effects of the SDS on HbA. The denaturation pathway of the HbA involved mainly the formation of heme dimers and some ferryl heme species. For the HbS, heme monomers and a large amount of ferryl species were formed. It is suggested that the greater monomer species formed by the HbS denaturation pathway would result in both Fenton and enhanced enzymatic reactions, compared to the dimer. This could lead ultimately to the formation of ferryl radicals. Thus, at physiological pH for the HbS, the Ca–SDS interaction increases the tendency for protein denaturation in comparison to the HbA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lew, V. L., Daw, N., Perdomo, D., Etzion, Z., Bookchin, R. M., & Tiffert, T. (2003). Distribution of plasma membrane Ca2+ pump activity in normal human red blood cells. Blood, 102, 4206–4213.

    Article  PubMed  CAS  Google Scholar 

  2. Lew, V. L., Tiffert, T., & Ginsburg, H. (2003). Excess hemoglobin digestion and the osmotic stability of Plasmodium falciparum-infected red blood cells. Blood, 101, 4189–4194.

    Article  PubMed  CAS  Google Scholar 

  3. Miller, L. H., Good, M. F., & Milon, G. (1994). Malaria pathogenesis. Science, 264, 1878–1883.

    Article  PubMed  CAS  Google Scholar 

  4. McGilvray, I. D., Serghides, L., Kapus, A., Rotstein, O. D., & Kain, K. C. (2000). Nonopsonic monocyte/macrophage phagocytosis of Plasmodium falciparum-parasitized erythrocytes: a role for CD36 in malarial clearance. Blood, 96, 3231–3240.

    PubMed  CAS  Google Scholar 

  5. Lopez-Estraño, C., Bhattacharjee, S., Harrison, T., & Haldar, K. (2003). Cooperative domains define a unique host cell-targeting signal in Plasmodium falciparum-infected erythrocytes. Proceedings of the National Academy of Sciences of the United States of America, 100, 12402–12407.

    Article  PubMed  Google Scholar 

  6. Banerjee, R., Liu, J., Beatty, W., Pelosof, L., Klemba, M., & Goldberg, D. E. (2002). Four plasmepsins are active in the Plasmodium falciparum food vacuole, including a protease with an active-site histidine. Proceedings of the National Academy of Sciences of the United States of America, 99, 990–995.

    Article  PubMed  CAS  Google Scholar 

  7. Hanspal, M., Dua, M., Takakuwa, Y., Chishti, A. H., & Mizuno, A. (2002). Plasmodium falciparum cysteine protease falcipain-2 cleaves erythrocyte membrane skeletal proteins at late stages of parasite development. Blood, 100, 1048–1054.

    Article  PubMed  CAS  Google Scholar 

  8. Nielsen, K. M., Kasper, J., Choi, M., Bedford, T., Kristiansen, K., Wirth, D. F., et al. (2003). Gene conversion as a source of nucleotide diversity in Plasmodium falciparum. Molecular Biology of Evolution, 20, 726–734.

    Article  CAS  Google Scholar 

  9. Kadota, K., Ishino, T., Matsuyama, T., Chinzei, Y., & Yuda, M. (2004). Essential role of membrane-attack protein in malarial transmission to mosquito host. Proceedings of the National Academy of Sciences of the United States of America, 101, 16310–16315.

    Article  PubMed  CAS  Google Scholar 

  10. Allison, A. C. (2002). The discovery of resistance to malaria of sickle-cell heterozygotes. In mini-series: significant contributions to biological chemistry over the past 125 years. Biochemistry and Molecular Biology of Education, 30, 279–287.

    Article  Google Scholar 

  11. Chotivanich, K., Udomsangpetch, R., Pattanapanyasat, K., Chierakul, W., Simpson, J., Looareesuwan, S., et al. (2002). Hemoglobin E: a balanced polymorphism protective against high parasitemias and thus severe P. falciparum malaria. Blood, 100, 1172–1176.

    PubMed  CAS  Google Scholar 

  12. Kelemen, C., Chien, S., & Artmann, G. M. (2001). Temperature transition of human hemoglobin at body temperature: effects of calcium. Biophysical Journal, 80, 2622–2630.

    Article  PubMed  CAS  Google Scholar 

  13. Wasserman, M., Alarcón, C., & Mendoza, P. M. (1982). Effects of Ca2+ depletion on the asexual cell cycle of Plasmodium falciparum. American Journal of Tropical Medicine and Hygiene, 31, 711–717.

    PubMed  CAS  Google Scholar 

  14. Tanabe, K. (1990). Ion metabolism in malaria infected erythrocytes. Blood Cells, 16, 437–449.

    PubMed  CAS  Google Scholar 

  15. Hubber, S. M., Uhlemann, A.-C., Gamper, N. L., Duranton, C., Kremsner, P. G., & Lang, F. (2002). Plasmodium falciparum activates endogenous Cl channels of human erythrocytes by membrane oxidation. European Molecular Biology Organization Journal, 21, 22–30.

    Google Scholar 

  16. Gazarini, M. L., Thomas, A. P., Pozzan, T., & Garcia, C. R. S. (2003). Calcium signalling in a low calcium environment: how the intracellular malaria parasite solves the problem. Journal of Cell Biology, 161, 103–110.

    Article  PubMed  CAS  Google Scholar 

  17. Ward, G. E., Miller, L. H., & Dvorak, J. A. (1993). The origin of parasitophorous vacuole membrane lipids in malaria-infected erythrocytes. Journal of Cell Science, 106, 237–248.

    PubMed  CAS  Google Scholar 

  18. Dluzewski, A. R., Zicha, D., Dunn, G. A., & Gratzer, W. B. (1995). Origins of the parasitophorous vacuole membrane of the malaria parasite: surface area of the parasitized red cell. European Journal of Cell Biology, 68, 446–449.

    PubMed  CAS  Google Scholar 

  19. Murphy, S. C., Samuel, B. U., Harrison, T., Speicher, K. D., Speicher, D. W., Reid, M. E., et al. (2004). Erythrocyte detergent-resistant membrane proteins: their characterization and selective uptake during malarial infection. Blood, 103, 1920–1928.

    Article  PubMed  CAS  Google Scholar 

  20. Sein, K. K., & Aikawa, M. (1998). The prime role of plasma membrane cholesterol in the pathogenesis of immune evasion and clinical manifestations of falciparum malaria. Medical Hypotheses, 51, 105–110.

    Article  PubMed  CAS  Google Scholar 

  21. Samuel, B. U., Mohandas, N., Harrison, T., McManus, H., Rosse, W., Reid, M., et al. (2001). The role of cholesterol and glycosylphosphatidylinositol-anchored proteins of erythrocyte rafts in regulating raft protein content and malarial infection. Journal of Biological Chemistry, 276, 29319–29329.

    Article  PubMed  CAS  Google Scholar 

  22. Tekwani, B. L., & Walker, L. A. (2005). Targeting the hemozoin synthesis pathway for new antimalarial drug discovery: technologies for in vitro β-hematin formation assay. Combinatorial Chemistry and High Throughput Screening, 8, 63–79.

    Article  PubMed  CAS  Google Scholar 

  23. Aprelev, A., Rotter, M. A., Etzion, Z., Bookchin, R. M., Briehl, R. W., & Ferrone, F. A. (2005). The effects of erythrocyte membranes on the nucleation of sickle hemoglobin. Biophysical Journal, 88, 2815–2822.

    Article  PubMed  CAS  Google Scholar 

  24. Orjih, A. U. (2001). On the mechanism of hemozoin production in malaria parasites: activated erythrocyte membranes promote β-hematin synthesis. Experimental Biology and Medicine, 226, 746–752.

    PubMed  CAS  Google Scholar 

  25. Decker, H., Ryan, M., Jaenicke, E., & Terwilliger, N. (2001). SDS-induced phenoloxidase activity of hemocyanins from Limulus polyphemus, Eurypelma californicum, and Cancer magister. Journal of Biological Chemistry, 276, 17796–17799.

    Article  PubMed  CAS  Google Scholar 

  26. Tanaka, A., & Hoshino, E. (2003). Similarities between the thermal inactivation kinetics of Bacillus amyloliquefaciens α-amylase in an aqueous solution of sodium dodecyl sulphate and the kinetics in the solution of anionic phospholipid vesicles. Biotechnology and Applied Biochemistry, 38, 175–181.

    Article  PubMed  CAS  Google Scholar 

  27. Moosavi-Movahedi, A. A., Nazari, K., & Saboury, A. O. A. (1997). Thermodynamics of denaturation of horseradish peroxidase with sodium n-dodecyl sulphate and n-dodecyl trimethylammonium bromide. Colloids and Surfaces B: Biointerfaces, 9, 123–130.

    Article  CAS  Google Scholar 

  28. Ajloo, D., Moosavi-Movahedi, A. A., Sadeghi, M., & Gharibi, H. (2002). Comparative, structural and functional studies of avian and mammalian haemoglobins. Acta Biochimica Polonica, 49, 459–470.

    PubMed  CAS  Google Scholar 

  29. Bordbar, A. K., Moosavi-Movahedi, A. A., & Amini, M. K. (2003). A microcalorimetry and binding study on interaction of dodecyl trimethylammonium bromide with wigeon haemoglobin. Thermochimica Acta, 400, 95–100.

    Article  CAS  Google Scholar 

  30. William, R. C., Jr., & Tsay, K. Y. (1973). A convenient chromatographic method for the preparation of human hemoglobin. Analytical Biochemistry, 54, 137–145.

    Article  Google Scholar 

  31. Riggs, A. (1981). Preparation of blood hemoglobin of vertebrates. Methods in Enzymology, 76, 5–29.

    Article  PubMed  CAS  Google Scholar 

  32. La Brake, C. C., & Fung, L. W.-M. (1998). Sickle hemoglobin is more fusogenic than normal hemoglobin at physiological pH and ionic strength conditions. Biochemica et Biophysica Acta, 1406, 152–161.

    CAS  Google Scholar 

  33. Antonini, E., & Brunori, M. (1971). The derivatives of ferrous hemoglobin and myoglobin. In A. Neuberger & E. L. Tatum (Eds.), Hemoglobin and myoglobin in their reactions with ligands, vol 21 (pp. 13–39). Amsterdam: North-Holland Publishing Co.

    Google Scholar 

  34. Coletta, M., Ascenzi, P., Santucci, R., Bertollini, A., & Amconi, G. (1993). Interaction of inositol hexakisphosphate with liganded ferrous human hemoglobin: direct evidence for two functionally operative binding sites. Biochemica et Biophysica Acta, 1162, 309–314.

    Article  CAS  Google Scholar 

  35. Winterbourn, C. C. (1990). Oxidative reactions of hemoglobins. Methods in Enzymology, 186, 265–272.

    Article  PubMed  CAS  Google Scholar 

  36. Heitz, F., Van, & Mau, N. (2002). Protein structural changes induced by their uptake at interfaces. Biochemica et Biophysica Acta, 1597, 1–11.

    Article  CAS  Google Scholar 

  37. Polet, H., & Steinhardt, J. (1969). Sequential stages in the acid denaturation of horse and human ferrihemoglobins. Biochemistry, 8, 857–864.

    Article  PubMed  CAS  Google Scholar 

  38. Jarolim, P., Lahav, M., Liu, S.-C., & Palek, J. (1990). Effect of hemoglobin oxidation products on the stability of red cell membrane skeletons and the associations of skeletal proteins: correlation with a release of hemin. Blood, 76, 2125–2131.

    PubMed  CAS  Google Scholar 

  39. Egawa, T., Hishiki, T., Ichikawa, Y., Kanamori, Y., Shimada, H., Takahashi, S., et al. (2004). Refolding processes of cytochrome P450cam from ferric and ferrous acid forms to the native conformation: formations of folding intermediates with non-native heme coordination state. Journal of Biological Chemistry, 279, 32008–32017.

    Article  PubMed  CAS  Google Scholar 

  40. Asakura, T., Minakata, K., Adachi, K., Russell, M. O., & Schwartz, E. (1977). Denatured hemoglobin in sickle erythrocytes. Journal of Clinical Investigation, 59, 633–640.

    Article  PubMed  CAS  Google Scholar 

  41. Rifkind, J. M., Abugo, O., Levy, A., & Heim, J. (1994). Detection, formation, and relevance of hemichromes and hemochromes. Methods in Enzymology, 231, 449–480.

    Article  PubMed  CAS  Google Scholar 

  42. Asakura, T., Ohnishi, T., Friedman, S., & Schwartz, E. (1974). Abnormal precipitation of oxyhemoglobin S by mechanical shaking. Proceedings of the National Academy of Sciences of the United States of America, 71, 1594–1598.

    Article  PubMed  CAS  Google Scholar 

  43. Giulivi, C., & Davies, K. J. A. (1990). A novel antioxidant role of hemoglobin: the comproportionation of ferrylhemoglobin with oxyhemoglobin. Journal of Biological Chemistry, 265, 19453–19460.

    PubMed  CAS  Google Scholar 

  44. Tsuruga, M., & Shikama, K. (1997). Biphasic nature in the autoxidation reaction of human oxyhemoglobin. Biochemica et Biophysica Acta, 1337, 96–104.

    Article  CAS  Google Scholar 

  45. Tsuruga, M., Matsuoka, A., Hachimori, A., Sugawara, Y., & Shikama, K. (1998). The molecular mechanism of autoxidation for human oxyhemoglobin: tilting of the distal histidine causes nonequivalent oxidation in the β chain. Journal of Biological Chemistry, 273, 8607–8615.

    Article  PubMed  CAS  Google Scholar 

  46. Macdonald, V. (1994). Measuring relative rates of hemoglobin oxidation and denaturation. Methods in Enzymology, 231, 480–490.

    Article  PubMed  CAS  Google Scholar 

  47. Tofani, L., Feis, A., Snoke, R. E., Berti, D., Baglioni, P., & Smulevich, G. (2004). Spectroscopic and interfacial properties of myoglobin/surfactant complexes. Biophysical Journal, 87, 1186–1195.

    Article  PubMed  CAS  Google Scholar 

  48. Yusa, K., & Shikama, K. (1987). Oxidation of oxymyoglobin to metmyoglobin with hydrogen peroxide: involvement of ferryl intermediate. Biochemistry, 26, 6684–6688.

    Article  PubMed  CAS  Google Scholar 

  49. Exner, M., & Herold, S. (2000). Kinetic and mechanistic studies of the peroxynitrite-mediated oxidation of oxymyoglobin and oxyhemoglobin. Chemical Research and Toxicology, 12, 287–293.

    Article  Google Scholar 

  50. Lardinois, O. M., Ortiz, & de Montellano, P. R. (2003). Intra- and intermolecular transfers of protein radicals in the reactions of sperm whale myoglobin and hydrogen peroxide. Journal of Biological Chemistry, 278, 36214–36226.

    Article  PubMed  CAS  Google Scholar 

  51. Everse, J., Johnson, M. C., & Marini, M. A. (1994). Peroxidative activities of hemoglobin and hemoglobin derivatives. Methods in Enzymology, 231, 547–561.

    Article  PubMed  CAS  Google Scholar 

  52. Fitch, C. D., & Kanjananggulpan, P. (1987). The state of ferriprotoporphyrin IX in malaria pigment. Journal of Biological Chemistry, 262, 15552–15555.

    PubMed  CAS  Google Scholar 

  53. Pasternack, R. F., Huber, P. R., Boyd, P., Engasser, G., Francesconi, L., Gibbs, E., et al. (1972). On the aggregation of meso-substituted water-soluble porphyrins. Journal of American Chemical Society, 94, 4511–4517.

    Article  CAS  Google Scholar 

  54. Das, R. R., Pasternack, R. F., & Plane, R. A. (1970). Fast reaction kinetics of porphyrin dimerization in aqueous solution. Journal of American Chemical Society, 92, 3312–3316.

    Article  CAS  Google Scholar 

  55. Brown, S. B., Shillcock, M., & Jones, P. (1976). Equilibrium and kinetic studies of the aggregation of porphyrins in aqueous solution. Biochemical Journal, 153, 279–285.

    PubMed  CAS  Google Scholar 

  56. Brown, S. B., Dean, T. C., & Jones, P. (1970). Catalatic activity of iron (III)-centred catalysts: role of dimerization in the catalytic action of ferrihaems. Biochemical Journal, 117, 741–744.

    PubMed  CAS  Google Scholar 

  57. Jones, P., Robson, T., & Brown, S. B. (1973). The catalase activity of ferrihaems. Biochemical Journal, 135, 353–359.

    PubMed  CAS  Google Scholar 

  58. Jones, P., Prudhoe, K., & Robson, T. (1973). Oxidation of deuteroferrihaem by hydrogen peroxide. Biochemical Journal, 135, 361–365.

    PubMed  CAS  Google Scholar 

  59. Brown, N. A., King, R. F. G. J., Shillcock, M. E., & Brown, S. B. (1974). Haemoglobin catabolism: the role of ferrihaems in studies of the degradation pathway. Biochemical Journal, 137, 135–137.

    PubMed  CAS  Google Scholar 

  60. Poillon, W. N., & Kim, B. C. (1990). 2,3-Diphosphoglycerate and intracellular pH as interdependent determinants of the physiologic solubility of deoxyhemoglobin S. Blood, 76, 1028–1036.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We thank Prof. I. Francis Cheng of the Department of Chemistry, the University of Idaho—Moscow, Idaho-USA for providing some of the helpful materials used in the discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Okechukwu Nwamba.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chilaka, F.C., Nwamba, C.O. & Moosavi-Movahedi, A.A. Cation Modulation of Hemoglobin Interaction with Sodium n-Dodecyl Sulfate (SDS). I: Calcium Modulation at pH 7.20. Cell Biochem Biophys 60, 187–197 (2011). https://doi.org/10.1007/s12013-010-9139-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-010-9139-3

Keywords

Navigation