Skip to main content
Log in

Langmuir Films from Human Placental Membranes: Preparation, Rheology, Transfer to Alkylated Glasses, and Sigmoidal Kinetics of Alkaline Phosphatase in the Resultant Langmuir-Blodgett Film

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

In the present study, we studied the activity of human placental alkaline phosphatase (PLAP) constraint in a planar surface in controlled molecular packing conditions. For the first time, Langmuir films (LFs) were prepared by the spreading of purified placental membranes (PPM) on the air–water interface and their stability and rheological properties were studied. LFs exhibited a collapse pressure πC = 48 mN/m, hysteresis during the compression–decompression cycle (C–D), indicating a plastic deformation, and a compressibility modulus (K) compatible with liquid-expanded phases. A phase transition point appeared at πT = 28 mN/m and, following successive C–D, it moved toward lower surface areas and higher K, suggesting the lost of some non-PLAP proteins as components of vesicles that might protrude from the monolayer (confirmed by combining lipid/protein molar ratio analysis, PAGE-SDS and V max). LFs were transferred at 35 mN/m to alkylated glasses to obtain Langmuir-Blodgett films (LB35) the stability of which was confirmed by AFM. The kinetics of p-nitrophenyl phosphate (pNPP) hydrolysis at 37°C catalyzed by PPM was Michaelian and exhibited the thermostability at 60°C typical of PLAP. In LB35, PLAP exhibited a sigmoidal kinetics which resembled the behavior of the partially metalated enzyme but might become from a cross-talk between protein and membrane structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

A1, A2, and A3 :

Monolayer aspirated at 35 mN/m during the 1st, 2nd, and 3rd C–D cycles, respectively

AFM:

Atomic force microscopy

AP:

Alkaline phosphatase

C–D:

Compression–decompression cycle

% CV:

Percent variation coefficient

EDTA:

Ethylendiamintetraacetic acid

GPI:

Glycophostatidyl-inositol

K M :

Michaelis–Menten constant

LB35 :

Langmuir-Blodgett film packed at 35 mN/m

LF:

Langmuir film

2-ME:

2-Mercaptoethanol

M r :

Relative mobility

MWM:

Molecular weight markers

PAGE:

Polyacrylamide gel electrophoresis

PLAP:

Placental alkaline phosphatase

pNPP:

para-nitrophenylphosphate

pNPx:

para-nitro phenoxide

PPM:

Purified placental membrane

SDS:

Sodium dodecyl-sulfate

s.e.m.:

Standard error of the mean

V max :

Maximal velocity

V 0 :

Initial velocity

References

  1. Perillo, M. A., Guidotti, A., Costa, E., Yu, R. K., & Maggio, B. (1994). Modulation of phospholipases A2 and C activities against dilauroylphosphorylcholine in mixed monolayers with semisynthetic derivatives of ganglioside and sphingosine. Molecular Membrane Biology, 11(2), 119–126.

    Article  PubMed  CAS  Google Scholar 

  2. Maggio, B. (1999). Modulation of phospholipase A2 by electrostatic fields and dipole potential of glycosphingolipids in monolayers. The Journal of Lipid Research, 40(5), 930–939.

    CAS  Google Scholar 

  3. Fanani, M. L., & Maggio, B. (2000). Kinetic steps for the hydrolysis of sphingomyelin by Bacillus cereus sphingomyelinase in lipid monolayers. The Journal of Lipid Research, 41(11), 1832–1840.

    CAS  Google Scholar 

  4. Perillo, M. A., Yu, R. K., & Maggio, B. (1994). Modulation of the activity of Clostridium perfringens neuraminidase by the molecular organization of gangliosides in monolayers. Biochimica et Biophysica Acta, 1193(1), 155–164.

    Article  PubMed  CAS  Google Scholar 

  5. Cantor, R. S. (1999). Solute modulation of conformational equilibria in intrinsic membrane proteins: Apparent “Cooperativity” without binding. Biophysical Journal, 77(5), 2643–2647.

    Article  PubMed  CAS  Google Scholar 

  6. Garcia, D. A., Marin, R. H., & Perillo, M. A. (2002). Stress-induced decrement in the plasticity of the physical properties of chick brain membranes. Molecular Membrane Biology, 19(3), 221–230.

    Article  PubMed  CAS  Google Scholar 

  7. Sanchez, J. M., & Perillo, M. A. (2002). Membrane topology modulates beta-galactosidase activity against soluble substrates. Biophysical Chemistry, 99(3), 281–295.

    Article  PubMed  CAS  Google Scholar 

  8. Resh, M. D. (2006). Trafficking and signaling by fatty-acylated and prenylated proteins. Nature Chemical Biology, 2(11), 584–590.

    Article  PubMed  CAS  Google Scholar 

  9. Nadolski, M. J., & Linder, M. E. (2007). Protein lipidation. FEBS Journal, 274(20), 5202–5210.

    Article  PubMed  CAS  Google Scholar 

  10. Nosjean, O., Briolay, A., & Roux, B. (1997). Mammalian GPI proteins: Sorting, membrane residence and functions. Biochimica et Biophysica Acta, 1331(2), 153–186.

    PubMed  CAS  Google Scholar 

  11. Ferguson, M. A. (1999). The structure, biosynthesis and functions of glycosylphosphatidylinositol anchors, and the contributions of trypanosome research. Journal of Cell Science, 112(Pt 17), 2799–2809.

    PubMed  CAS  Google Scholar 

  12. Nosjean, O., & Roux, B. (1999). Ectoplasmic insertion of a glycosylphosphatidylinositol-anchored protein in glycosphingolipid- and cholesterol-containing phosphatidylcholine vesicles. European Journal of Biochemistry, 263(3), 865–870.

    Article  PubMed  CAS  Google Scholar 

  13. Wang, J., Gunning, W., Kelley, K. M., & Ratnam, M. (2002). Evidence for segregation of heterologous GPI-anchored proteins into separate lipid rafts within the plasma membrane. Journal of Membrane Biology, 189(1), 35–43.

    Article  PubMed  CAS  Google Scholar 

  14. Giocondi, M. C., Besson, F., Dosset, P., Milhiet, P. E., & Le Grimellec, C. (2007). Remodeling of ordered membrane domains by GPI-anchored intestinal alkaline phosphatase. Langmuir, 23(18), 9358–9364.

    Article  PubMed  CAS  Google Scholar 

  15. M-Cc, Giocondi., Seantier, B., Dosset, P., Milhiet, P.-E., & Le Grimellec, C. (2008). Characterizing the interactions between GPI-anchored alkaline phosphatases and membrane domains by AFM. Pflugers Archiv European Journal of Physiology, 456(1), 179–188.

    Article  CAS  Google Scholar 

  16. Ronzon, F., Desbat, B., Chauvet, J. P., & Roux, B. (2002). Behavior of a GPI-anchored protein in phospholipid monolayers at the air-water interface. Biochimica et Biophysica Acta, 1560(1–2), 1–13.

    Article  PubMed  CAS  Google Scholar 

  17. Le Du, M. H., Stigbrand, T., Taussig, M. J., Menez, A., & Stura, E. A. (2001). Crystal structure of alkaline phosphatase from human placenta at 1.8 A resolution. Implication for a substrate specificity. Journal of Biological Chemistry, 276(12), 9158–9165.

    Article  PubMed  CAS  Google Scholar 

  18. Lehto, M. T., & Sharom, F. J. (2002). Proximity of the protein moiety of a GPI-anchored protein to the membrane surface: A FRET study. Biochemistry, 41(26), 8368–8376.

    Article  PubMed  CAS  Google Scholar 

  19. Caseli, L., Oliveira, R. G., Masui, D. C., Furriel, R. P., Leone, F. A., Maggio, B., et al. (2005). Effect of molecular surface packing on the enzymatic activity modulation of an anchored protein on phospholipid Langmuir monolayers. Langmuir, 21(9), 4090–4095.

    Article  PubMed  CAS  Google Scholar 

  20. Rosetti, C. M., Maggio, B., & Oliveira, R. G. (2008). The self-organization of lipids and proteins of myelin at the membrane interface. Molecular factors underlying the microheterogeneity of domain segregation. Biochimica et Biophysica Acta, 1778(7–8), 1665–1675.

    Article  PubMed  CAS  Google Scholar 

  21. Verger, R., & Pattus, F. (1976). Spreading of membranes at the air/water interface. Chemistry and Physics of Lipids, 16(4), 285–291.

    Article  PubMed  CAS  Google Scholar 

  22. Pattus, F., Piovant, M. C. L., Lazdunski, C. J., Desnuelle, P., & Verger, R. (1978). Spreading of biomembranes at the air water interface. Biochimica et Biophysica Acta, 507, 71–82.

    Article  PubMed  CAS  Google Scholar 

  23. Pattus, F., Rothen, C., Streit, M., & Zahler, P. (1981). Further studies on the spreading of biomembranes at the air/water interface. Structure, composition, enzymatic activities of human erythrocyte and sarcoplasmic reticulum membrane films. Biochimica et Biophysica Acta, 647, 29–39.

    Article  PubMed  CAS  Google Scholar 

  24. Oliveira, R. G., & Maggio, B. (2003). Surface behavior, microheterogeneity and adsorption equilibrium of myelin at the air-water interface. Chemistry and Physics of Lipids, 122(1–2), 171–176.

    Article  PubMed  CAS  Google Scholar 

  25. Calderon, R. O., Maggio, B., Neuberger, T. J., & De Vries, G. H. (1993). Surface behavior of axolemma monolayers: Physico-chemical characterization and use as supported planar membranes for cultured Schwann cells. Journal of Neuroscience Research, 34(2), 206–218.

    Article  PubMed  CAS  Google Scholar 

  26. Zasadzinski, J. A., Viswanathan, R., Madsen, L., Garnaes, J., & Schwartz, D. K. (1994). Langmuir-Blodgett films. Science, 263(5154), 1726–1733.

    Article  PubMed  CAS  Google Scholar 

  27. Clop, E. M., Clop, P. D., Sanchez, J. M., Perillo, M. A. (2008). Molecular packing tunes the activity of Kluyveromyces lactis [beta]-galactosidase incorporated in Langmuir-Blodgett films. Langmuir, 24, 10950–10960.

    Article  PubMed  CAS  Google Scholar 

  28. Frank, F., Sartori, M. J., Asteggiano, C., Lin, S., de Fabro, S. P., & Fretes, R. E. (2000). The effect of placental subfractions on Trypanosoma cruzi. Experimental and Molecular Pathology, 69(2), 144–151.

    Article  PubMed  CAS  Google Scholar 

  29. Garcia, D. A., & Perillo, M. A. (2002). Flunitrazepam-membrane non-specific binding and unbinding: Two pathways with different energy barriers. Biophysical Chemistry, 95(2), 157–164.

    Article  PubMed  CAS  Google Scholar 

  30. Gaines, G. (1966). Insoluble monolayers at liquids-gas interfaces. New York: Interscience Publishers.

    Google Scholar 

  31. von Tscharner, V., & McConnell, H. M. (1981). Physical properties of lipid monolayers on alkylated planar glass surfaces. Biophysical Journal, 36(2), 421–427.

    Article  Google Scholar 

  32. Winston, P. W., Bates, D. H. (1960) Saturated solutions for the control of humidity in biological research. Ecology, 41(1):232–237 (CR - Copyright © 1960 Ecological Society of America).

    Google Scholar 

  33. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193(1), 265–275.

    PubMed  CAS  Google Scholar 

  34. Markwell, M. A. K., Haas, S. M., Bieber, L. L., & Tolbert, N. E. (1978). A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Analytical Biochemistry, 87(1), 206–210.

    Article  PubMed  CAS  Google Scholar 

  35. Chen, P. S., Toribara, T. Y., & Warner, H. (1956). Microdetermination of phosphorus. Analytical Chemistry, 28(11), 1756–1758.

    Article  CAS  Google Scholar 

  36. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680–685.

    Article  PubMed  CAS  Google Scholar 

  37. Neuhoff, V., Stamm, R., & Eibl, H. (1985). Clear background and highly sensitive protein staining with Coomassie Blue dyes in polyacrylamide gels: A systematic analysis. Electrophoresis, 6(9), 427–448.

    Article  CAS  Google Scholar 

  38. Angellis, D., Inglis, N. R., & Fishman, W. H. (1976). Isoelectric focusing of alkaline phosphatase isoenzymes in polyacrylamide gels. Use of Triton X-100 and improved staining technic. American Journal of Clinical Pathology, 66(6), 929–934.

    PubMed  CAS  Google Scholar 

  39. Neale, F., Clubb, J., Hotchkis, D., & Posen, S. (1965). Heat stability of human placental alkaline phosphatase. Journal of Clinical Pathology, 18, 359–363.

    Article  PubMed  CAS  Google Scholar 

  40. Segel, I. H. (1993). Enzyme kinetics: Behavior and analysis of rapid equilibrium and steady-state enzyme systems. New York: Wiley Classics Library.

    Google Scholar 

  41. Cross, B., Ronzon, F., Roux, B., & Rieu, J.-P. (2005). Measurement of the anchorage force between GPI-anchored alkaline phosphatase and supported membranes by AFM force spectroscopy. Langmuir, 21(11), 5149–5153.

    Article  PubMed  CAS  Google Scholar 

  42. Sokal, R., & Rohlf, F. (1987). Introduction to biostatistics. New York: W. H. Freeman & Company.

    Google Scholar 

  43. Green, J. R., & Margerison, J. D. (1978). Statistical treatment of experimental data. New York: Elsevier.

    Google Scholar 

  44. Eggers, D. K., & Valentine, J. S. (2001). Crowding and hydration effects on protein conformation: A study with sol-gel encapsulated proteins. Journal of Molecular Biology, 314(4), 911–922.

    Article  PubMed  CAS  Google Scholar 

  45. Hoylaerts, M. F., Ding, L., Narisawa, S., Van Kerckhoven, S., & Millan, J. L. (2006). Mammalian alkaline phosphatase catalysis requires active site structure stabilization via the N-terminal amino acid microenvironment. Biochemistry, 45(32), 9756–9766.

    Article  PubMed  CAS  Google Scholar 

  46. Hung, H. C., & Chang, G. G. (2001). Multiple unfolding intermediates of human placental alkaline phosphatase in equilibrium urea denaturation. Biophysical Journal, 81(6), 3456–3471.

    Article  PubMed  CAS  Google Scholar 

  47. Oliveira, R. G., Calderon, R. O., & Maggio, B. (1998). Surface behavior of myelin monolayers. Biochimica et Biophysica Acta, 1370(1), 127–137.

    Article  PubMed  CAS  Google Scholar 

  48. Carrer, D. C., & Maggio, B. (1999). Phase behavior and molecular interactions in mixtures of ceramide with dipalmitoylphosphatidylcholine. The Journal of Lipid Research, 40(11), 1978–1989.

    CAS  Google Scholar 

  49. Davies, J. T., & Rideal, E. K. (1963). Interfacial phenomena (2nd ed.). New York: Academic Press Inc.

    Google Scholar 

  50. Ly, H. V., & Longo, M. L. (2004). The influence of short-chain alcohols on interfacial tension, mechanical properties, area/molecule, and permeability of fluid lipid bilayers. Biophysical Journal, 87(2), 1013–1033.

    Article  PubMed  CAS  Google Scholar 

  51. Koenig, B. W., Strey, H. H., & Gawrisch, K. (1997). Membrane lateral compressibility determined by NMR and x-ray diffraction: Effect of acyl chain polyunsaturation. Biophysical Journal, 73(4), 1954–1966.

    Article  PubMed  CAS  Google Scholar 

  52. Evans, E. A., Waugh, R., & Melnik, L. (1976). Elastic area compressibility modulus of red cell membrane. Biophysical Journal, 16(6), 585–595.

    Article  PubMed  CAS  Google Scholar 

  53. Marsh, D. (1996). Lateral pressure in membranes. Biochimica et Biophysica Acta, 1286(3), 183–223.

    PubMed  CAS  Google Scholar 

  54. Edidin, M. (2001). Shrinking patches and slippery rafts: Scales of domains in the plasma membrane. Trends in Cell Biology, 11(12), 492–496.

    Article  PubMed  CAS  Google Scholar 

  55. Riegler, H., & Spratte, K. (1992). Structural changes in lipid monolayers during the Langmuir-Blodgett transfer due to substrate/monolayer interactions. Thin Solid Films, 210–211(Part 1), 9–12.

    Article  Google Scholar 

  56. Girard-Egrot, A. P., Godoy, S., Blum, L. J. (2005). Enzyme association with lipidic Langmuir-Blodgett films: Interests and applications in nanobioscience. Advances in Colloid and Interface Science. A Collection of Papers to mark the 65th Birthday of Professor Ludwig Brehmer 2005, 116(1–3):205–225.

  57. Saslowsky, D. E., Lawrence, J., Ren, X., Brown, D. A., Henderson, R. M., & Edwardson, J. M. (2002). Placental alkaline phosphatase is efficiently targeted to rafts in supported lipid bilayers. The Journal of Biological Chemistry, 277(30), 26966–26970.

    Article  PubMed  CAS  Google Scholar 

  58. Milhiet, P. E., Giocondi, M. C., Baghdadi, O., Ronzon, F., Roux, B., & Le Grimellec, C. (2002). Spontaneous insertion and partitioning of alkaline phosphatase into model lipid rafts. EMBO Reports, 3(5), 485–490.

    Article  PubMed  CAS  Google Scholar 

  59. Denier, C., Brisson-Lougarre, A., Biasini, G., Grozdea, J., & Fournier, D. (2002). Kinetic comparison of tissue non-specific and placental human alkaline phosphatases expressed in baculovirus infected cells: Application to screening for Down’s syndrome. BMC Biochemistry, 3(1), 2.

    Article  PubMed  Google Scholar 

  60. Roig NIG, M. G., Burguillo, F. J., Cachaza, J. M., & Kennedy, J. F. (1993). Effecters on human placental alkaline phosphatase activity. Polymer International, 31(2), 145–151.

    Article  Google Scholar 

  61. Neale, F. C., Clubb, J. S., Hotchkis, D., & Posen, S. (1965). Heat stability of human placental alkaline phosphatase. Journal of Clinical Pathology, 18, 359–363.

    Article  PubMed  CAS  Google Scholar 

  62. PetitClerc, C. (1976). Quantitative fractionation of alkaline phosphatase isoenzymes according to their thermostability. Clinical Chemistry, 22(1), 42–48.

    PubMed  CAS  Google Scholar 

  63. Petrigliano, A., Tronin, A., & Nicolini, C. (1996). Deposition and enzymatic activity of Langmuir-Blodgett films of alkaline phosphatase. Thin Solid Films. Seventh International Conference on Organized Molecular Films, 284–285, 752–756.

    Google Scholar 

  64. Caseli, L., Furriel, R. P. M., de Andrade, J. F., Leone, F. A., & Zaniquelli, M. E. D. (2004). Surface density as a significant parameter for the enzymatic activity of two forms of alkaline phosphatase immobilized on phospholipid Langmuir-Blodgett films. Journal of Colloid and Interface Science, 275(1), 123–130.

    Article  PubMed  CAS  Google Scholar 

  65. Caseli, L., Masui, D. C., Furriel, R. P., Leone, F. A., & Zaniquelli, M. E. (2005). Incorporation conditions guiding the aggregation of a glycosylphosphatidyl inositol (GPI)-anchored protein in Langmuir monolayers. Colloids and Surfaces B: Biointerfaces, 46(4), 248–254.

    Article  CAS  Google Scholar 

  66. Caseli, L., Masui, D. C., Furriel, R. P. M., Leone, F. A., & Zaniquelli, M. E. D. (2007). Influence of the glycosylphosphatidylinositol anchor in the morphology and roughness of Langmuir-Blodgett films of phospholipids containing alkaline phosphatases. Thin Solid Films, 515(11), 4801–4807.

    Article  CAS  Google Scholar 

  67. Caseli, L., Zaniquelli, M. E. D., Furriel, R. P. M., & Leone, F. A. (2002). Enzymatic activity of alkaline phosphatase adsorbed on dimyristoylphosphatidic acid Langmuir-Blodgett films. Colloids and Surfaces B: Biointerfaces, 25(2), 119–128.

    Article  CAS  Google Scholar 

  68. Sesana, S., Re, F., Bulbarelli, A., Salerno, D., Cazzaniga, E., & Masserini, M. (2008). Membrane features and activity of GPI-anchored enzymes: Alkaline phosphatase reconstituted in model membranes. Biochemistry, 47(19), 5433–5440.

    Article  PubMed  CAS  Google Scholar 

  69. Girard-Egrot, A. P., Morélis, R. M., & Coulet, P. R. (1998). Direct bioelectrochemical monitoring of choline oxidase kinetic behaviour in Langmuir-Blodgett nanostructures. Bioelectrochemistry and Bioenergetics, 46(1), 39–44.

    Article  CAS  Google Scholar 

  70. Hoylaerts, M. F., Manes, T., & Millan, J. L. (1997). Mammalian alkaline phosphatases are allosteric enzymes. Journal of Biological Chemistry, 272(36), 22781–22787.

    Article  PubMed  CAS  Google Scholar 

  71. Savageau, M. A. (1995). Michaelis–Menton mechanism reconsidered: Implications of fractal kinetics. Journal of Theoretical Biology, 176(1), 115–124.

    Article  PubMed  CAS  Google Scholar 

  72. Clop, E. M., Clop, P. D., Sanchez, J. M., & Perillo, M. A. (2008). Molecular packing tunes the activity of Kluyveromyces lactis beta-galactosidase incorporated in Langmuir-Blodgett films. Langmuir, 24(19), 10950–10960.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Authors gratefully acknowledge the Dr M.J.Sartori for helping in placentas obtaining, dissection and fractionation. This work was supported by grants from CONICET, SeCyT-UNC, Agencia Córdoba Ciencia and Foncyt. EMC is a graduate students from the Doctorado en Ciencias Biológicas, FCEFyN, UNC and a fellowships holder from CONICET. MAP is a career member of the later institution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María A. Perillo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clop, E.M., Perillo, M.A. Langmuir Films from Human Placental Membranes: Preparation, Rheology, Transfer to Alkylated Glasses, and Sigmoidal Kinetics of Alkaline Phosphatase in the Resultant Langmuir-Blodgett Film. Cell Biochem Biophys 56, 91–107 (2010). https://doi.org/10.1007/s12013-009-9073-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-009-9073-4

Keywords

Navigation