Skip to main content
Log in

miRNA-146a-5p Inhibits Hypoxia-Induced Myocardial Fibrosis Through EndMT

  • Research
  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Cardiac Vascular disease particularly myocardial infarction (MI) is a threat to health worldwide. microRNAs (miRNAs) have been shown to regulate myocardial fibrosis. Therefore, it is potential to investigate the mechanism of miRNA and fibrosis following myocardial infarction. Hypoxia human cardiac microvascular endothelial cells (HCMECs) were selected for the vitro experimental model. The miR-146a-5p expression was tested via RT-qPCR. The level of endothelial-to-mesenchymal transition (EndMT) and fibrosis markers were detected by Western blotting and immunofluorescence. Then, the inflammation, cell viability and apoptosis were investigated. The target was predicted by an online database and verified by a dual-luciferase activity assay. An MI mouse model was created to validate that miR-146a-5p regulates cardiac fibrosis in vivo. MI mouse was transfected with miR-146a-5p lentivirus. Subsequently, its effect on cardiac fibrosis of infarcted hearts was assessed by In situ hybridization (ISH), Immunohistochemistry (IHC), Triphenylterazolium chloride (TTC) staining and Masson staining. Herein, we confirmed that miR-146a-5p was down-regulated in hypoxia HCMECs. Overexpression of miR-146a-5p inhibited hypoxia-induced cardiac fibrosis following myocardial infarction by inhibiting EndMT in HCMECs. Thioredoxin-interacting protein (TXNIP) was a target that was negatively regulated by miR-146a-5p. Up-regulation of miR-146a-5p inhibited cardiac fibrosis via regulating EndMT by targeting TXNIP, and it also regulated EndMT to inhibit cardiac fibrosis in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data sets generated and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Roth, G. A., Mensah, G. A., & Fuster, V. (2020). The global burden of cardiovascular diseases and risks: A compass for global action. Journal of the American College of Cardiology, 76(25), 2980–2981.

    Article  CAS  PubMed  Google Scholar 

  2. Roth, G. A., Mensah, G. A., Johnson, C. O., Addolorato, G., Ammirati, E., Baddour, L. M., Barengo, N. C., Beaton, A. Z., Benjamin, E. J., Benziger, C. P., Bonny, A., Brauer, M., Brodmann, M., Cahill, T. J., Carapetis, J., Catapano, A. L., Chugh, S. S., Cooper, L. T., Coresh, J., … GBD-NHLBI-JACC Global Burden of Cardiovascular Diseases Writing Group. (2020). Global burden of cardiovascular diseases and risk factors, 1990-2019: Update from the GBD 2019 study. Journal of the American College of Cardiology, 76(25), 2982–3021.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Adams, E., McCloy, R., Jordan, A., Falconer, K., & Dykes, I. M. (2021). Direct reprogramming of cardiac fibroblasts to repair the injured heart. Journal of Cardiovascular Development and Disease. https://doi.org/10.3390/jcdd8070072

    Article  PubMed  PubMed Central  Google Scholar 

  4. Doenst, T., Haverich, A., Serruys, P., Bonow, R. O., Kappetein, P., Falk, V., Velazquez, E., Diegeler, A., & Sigusch, H. (2019). PCI and CABG for treating stable coronary artery disease: JACC review topic of the week. Journal of the American College of Cardiology, 73(8), 964–976.

    Article  PubMed  Google Scholar 

  5. Francis Stuart, S. D., De Jesus, N. M., Lindsey, M. L., & Ripplinger, C. M. (2016). The crossroads of inflammation, fibrosis, and arrhythmia following myocardial infarction. Journal of Molecular and Cellular Cardiology, 91, 114–122.

    Article  CAS  PubMed  Google Scholar 

  6. Wu, Y., Zhang, S., Gong, X., Tam, S., Xiao, D., Liu, S., & Tao, Y. (2020). The epigenetic regulators and metabolic changes in ferroptosis-associated cancer progression. Molecular Cancer, 19(1), 39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yang, Y., Li, J., Rao, T., Fang, Z., & Zhang, J. (2021). The role and mechanism of hyperoside against myocardial infarction in mice by regulating autophagy via NLRP1 inflammation pathway. Journal of Ethnopharmacology, 276, 114187.

    Article  CAS  PubMed  Google Scholar 

  8. Li, J., Cai, S. X., He, Q., Zhang, H., Friedberg, D., Wang, F., & Redington, A. N. (2018). Intravenous miR-144 reduces left ventricular remodeling after myocardial infarction. Basic Research in Cardiology, 113(5), 36.

    Article  PubMed  Google Scholar 

  9. Lionetti, V., Tuana, B. S., Casieri, V., Parikh, M., & Pierce, G. N. (2019). Importance of functional food compounds in cardioprotection through action on the epigenome. European Heart Journal, 40(7), 575–582.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang, J., Lu, Y., Mao, Y., Yu, Y., Wu, T., Zhao, W., Zhu, Y., Zhao, P., & Zhang, F. (2022). IFN-γ enhances the efficacy of mesenchymal stromal cell-derived exosomes via miR-21 in myocardial infarction rats. Stem Cell Research & Therapy, 13(1), 333.

    Article  CAS  Google Scholar 

  11. Huang, Y., Qi, Y., Du, J. Q., & Zhang, D. F. (2014). MicroRNA-34a regulates cardiac fibrosis after myocardial infarction by targeting Smad4. Expert Opinion on Therapeutic Targets, 18(12), 1355–1365.

    CAS  PubMed  Google Scholar 

  12. Wang, X., Yang, C., Liu, X., & Yang, P. (2018). Ghrelin alleviates angiotensin II-induced H9c2 apoptosis: Impact of the miR-208 family. Medical Science Monitor : International Medical Journal of Experimental and Clinical Research, 24, 6707–6716.

    Article  CAS  PubMed  Google Scholar 

  13. Lam, J., van den Bosch, M., Wegrzyn, J., Parker, J., Ibrahim, R., Slowski, K., Chang, L., Martinez-Høyer, S., Condorelli, G., Boldin, M., Deng, Y., Umlandt, P., Fuller, M., & Karsan, A. (2018). miR-143/145 differentially regulate hematopoietic stem and progenitor activity through suppression of canonical TGFβ signaling. Nature Communications, 9(1), 2418.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  14. Zhang, L., He, J., Wang, J., Liu, J., Chen, Z., Deng, B., Wei, L., Wu, H., Liang, B., Li, H., Huang, Y., Lu, L., Yang, Z., Xian, S., & Wang, L. (2021). Knockout RAGE alleviates cardiac fibrosis through repressing endothelial-to-mesenchymal transition (EndMT) mediated by autophagy. Cell Death & Disease, 12(5), 470.

    Article  CAS  Google Scholar 

  15. Mao, J., Liu, J., Zhou, M., Wang, G., Xiong, X., & Deng, Y. (2022). Hypoxia-induced interstitial transformation of microvascular endothelial cells by mediating HIF-1α/VEGF signaling in systemic sclerosis. PLoS ONE, 17(3), e0263369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Iwano, M., Plieth, D., Danoff, T. M., Xue, C., Okada, H., & Neilson, E. G. (2002). Evidence that fibroblasts derive from epithelium during tissue fibrosis. The Journal of Clinical Investigation, 110(3), 341–350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Brokopp, C. E., Schoenauer, R., Richards, P., Bauer, S., Lohmann, C., Emmert, M. Y., Weber, B., Winnik, S., Aikawa, E., Graves, K., Genoni, M., Vogt, P., Lüscher, T. F., Renner, C., & Hoerstrup, S. P. (2011). Matter CM Fibroblast activation protein is induced by inflammation and degrades type I collagen in thin-cap fibroatheromata. European Heart Journal, 32(21), 2713–2722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jensen, E. C. (2013). Quantitative analysis of histological staining and fluorescence using ImageJ. Anatomical Record (Hoboken, NJ : 2007), 296(3), 378–381.

    Article  Google Scholar 

  19. Iourov, I. Y. (2017). Quantitative fluorescence in situ hybridization (QFISH). Methods in Molecular Biology (Clifton, NJ), 1541, 143–149.

    Article  CAS  Google Scholar 

  20. Varghese, F., Bukhari, A. B., Malhotra, R., & De, A. (2014). IHC Profiler: An open source plugin for the quantitative evaluation and automated scoring of immunohistochemistry images of human tissue samples. PLoS ONE, 9(5), e96801.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  21. Ruifrok, A. C., & Johnston, D. A. (2001). Quantification of histochemical staining by color deconvolution. Analytical and Quantitative Cytology and Histology, 23(4), 291–299.

    CAS  PubMed  Google Scholar 

  22. Leask, A. (2015). Getting to the heart of the matter: New insights into cardiac fibrosis. Circulation Research, 116(7), 1269–1276.

    Article  CAS  PubMed  Google Scholar 

  23. Schelbert, E. B., Fonarow, G. C., Bonow, R. O., Butler, J., & Gheorghiade, M. (2014). Therapeutic targets in heart failure: Refocusing on the myocardial interstitium. Journal of the American College of Cardiology, 63(21), 2188–2198.

    Article  PubMed  Google Scholar 

  24. Cheng, R., Dang, R., Zhou, Y., Ding, M., & Hua, H. (2017). MicroRNA-98 inhibits TGF-β1-induced differentiation and collagen production of cardiac fibroblasts by targeting TGFBR1. Human Cell, 30(3), 192–200.

    Article  CAS  PubMed  Google Scholar 

  25. van Rooij, E., Sutherland, L. B., Thatcher, J. E., DiMaio, J. M., Naseem, R. H., Marshall, W. S., Hill, J. A., & Olson, E. N. (2008). Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proceedings of the National Academy of Sciences of the United States of America, 105(35), 13027–13032.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  26. Guan, H., Shang, G., Cui, Y., Liu, J., Sun, X., Cao, W., Wang, Y., & Li, Y. (2019). Long noncoding RNA APTR contributes to osteosarcoma progression through repression of miR-132-3p and upregulation of yes-associated protein 1. Journal of Cellular Physiology, 234(6), 8998–9007.

    Article  CAS  PubMed  Google Scholar 

  27. Gao, X. F., Wang, Z. M., Wang, F., Gu, Y., Zhang, J. J., & Chen, S. L. (2019). Exosomes in coronary artery disease. International Journal of Biological Sciences, 15(11), 2461–2470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fraccarollo, D., Galuppo, P., & Bauersachs, J. (2012). Novel therapeutic approaches to post-infarction remodelling. Cardiovascular Research, 94(2), 293–303.

    Article  CAS  PubMed  Google Scholar 

  29. Viola, M., de Jager, S. C. A., & Sluijter, J. P. G. (2021). Targeting inflammation after myocardial infarction: A therapeutic opportunity for extracellular vesicles? International Journal of Molecular Sciences, 22(15), 7831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Frangogiannis, N. G. (2012). Regulation of the inflammatory response in cardiac repair. Circulation Research, 110(1), 159–173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ueland, T., Gullestad, L., Nymo, S. H., Yndestad, A., Aukrust, P., & Askevold, E. T. (2015). Inflammatory cytokines as biomarkers in heart failure. Clinica Chimica Acta: International Journal of Clinical Chemistry, 443, 71–77.

    Article  CAS  PubMed  Google Scholar 

  32. Panahi, M., Papanikolaou, A., Torabi, A., Zhang, J. G., Khan, H., Vazir, A., Hasham, M. G., Cleland, J. G. F., Rosenthal, N. A., Harding, S. E., & Sattler, S. (2018). Immunomodulatory interventions in myocardial infarction and heart failure: A systematic review of clinical trials and meta-analysis of IL-1 inhibition. Cardiovascular Research, 114(11), 1445–1461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hu, J., & Yu, Y. (2018). The function of thioredoxin-binding protein-2 (TBP-2) in different diseases. Oxidative Medicine and Cellular Longevity, 2018, 4582130.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Domingues, A., & Jolibois, J. (2021). Marquet de Rougé P, Nivet-Antoine V: The emerging role of TXNIP in ischemic and cardiovascular diseases; A novel marker and therapeutic target. Int J Mol Sci, 22(4), 1693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Narasimhan, B., Narasimhan, H., Lorente-Ros, M., Romeo, F. J., Bhatia, K., & Aronow, W. S. (2021). Therapeutic angiogenesis in coronary artery disease: A review of mechanisms and current approaches. Expert Opinion on Investigational Drugs, 30(9), 947–963.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We appreciate our colleagues for their helpful suggestions.

Funding

This study was supported by The National Natural Science Foundation of China (No. 82160076), Young Talents of Yunnan Thousand Talents Plan (No. RLQB20220011), Yunnan Provincial Department of Science and Technology (No. 202301AT070093), Special Foundation Projects of Joint Applied Basic Research of Yunnan Provincial Department of Science and Technology with Kunming Medical University (No. 202201AY070001-062), 535 Talent Project of First Affiliated Hospital of Kunming Medical University (No. 2023535Q04), Hospital management project of 920th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army (2019YGC06), The Reserve Talents’ Project of Science and Technology Pioneer in Yunnan Province. (No. 2019HB045).

Author information

Authors and Affiliations

Authors

Contributions

YW and JY: were responsible for the conceptualization of the project. YZ and CO: were responsible for the experimental design, application and manuscript writing. LC, WC, WW, SH, JH, GS, and LL: provided valuable suggestions for the manuscript and experiments. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Yan Wang or Jie Yu.

Ethics declarations

Competing interests

The authors have no competing interests to declare in relation to the content of this article.

Ethical Approval

Yunnan Labreal Co., Ltd. assisted with the animal experiments and was approved by the Ethics Committee. (Issue No. PZ20211003).

Consent for Publication

Upon request, the corresponding author can provide some or all of the data, models, or codes generated or used during the study.

Additional information

Handling Editor: Daniel Conklin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

12012_2023_9818_MOESM1_ESM.tif

Supplementary file1 (TIF 43233 KB) The immunofluorescence of α-SMA and Ve-cadherin in mouse heart section, x20, scale bar: 50um, n=6.

12012_2023_9818_MOESM2_ESM.tif

Supplementary file2 (TIF 45826 KB) The immunofluorescence of α-SMA and Ve-cadherin in mouse heart section, x20, scale bar: 50um, n=6.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Yu, J., Ou, C. et al. miRNA-146a-5p Inhibits Hypoxia-Induced Myocardial Fibrosis Through EndMT. Cardiovasc Toxicol 24, 133–145 (2024). https://doi.org/10.1007/s12012-023-09818-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-023-09818-1

Keywords

Navigation