Skip to main content
Log in

Beneficial Role of Some Natural Products to Attenuate the Diabetic Cardiomyopathy Through Nrf2 Pathway in Cell Culture and Animal Models

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Diabetic cardiomyopathy, as one of the main cardiac complications in diabetic patients, is identified to connect with oxidative stress that is due to interruption in balance between reactive oxygen species or/and reactive nitrogen species generation and their clearance by antioxidant protection systems. Transcription factor the nuclear factor erythroid 2-related factor 2 (Nrf2) plays a significant role in maintaining the oxidative homeostasis by regulating multiple downstream antioxidants. The Nrf2 plays a significant role in ARE-mediated basal and inducible expression of more than 200 genes that can be grouped into numerous categories as well as antioxidant genes and phase II detoxifying enzymes. On the other hand, activation of Nrf2 by natural and synthetic therapeutics or antioxidants has been revealed effective for the prevention and treatment of toxicities and diseases connected with oxidative stress. Hence, recently focus has been shifted toward plants and plant-based medicines in curing such chronic diseases, as they are supposed to be less toxic. In this review, we focused on the role of some natural products on diabetic cardiomyopathy through Nrf2 pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Nrf2:

Nuclear factor erythroid 2-related factor 2

Keap1:

Kelch-like ECH-associated protein 1

PI3K/AKT:

Phosphatidylinositol-3-kinase/protein kinase B

H2S:

Hydrogen sulfide

NQO1:

NAD(P)H:quinone oxidoreductase 1

HO-1:

Heme oxygenase 1

GCLM:

Glutamate–cysteine ligase modifier subunit

ERK/p38:

Extracellular signal-regulated kinases/p38

TBHP:

tert-Butyl hydroperoxide

References

  1. Cai, L., & Kang, Y. J. (2001). Oxidative stress and diabetic cardiomyopathy: A brief review. Cardiovascular Toxicology, 1, 181–193.

    Article  PubMed  CAS  Google Scholar 

  2. Cai, L., Wang, Y., Zhou, G., Chen, T., Song, Y., Li, X., et al. (2006). Attenuation by metallothionein of early cardiac cell death via suppression of mitochondrial oxidative stress results in a prevention of diabetic cardiomyopathy. Journal of the American College of Cardiology, 48, 1688–1697.

    Article  PubMed  CAS  Google Scholar 

  3. Boudina, S., & Abel, E. D. (2007). Diabetic cardiomyopathy revisited. Circulation, 115, 3213–3223.

    Article  PubMed  Google Scholar 

  4. Carolyn, (2015). Diabetic cardiomyopathy: An expression of stage B heart failure with preserved ejection fraction. Diabetes & Vascular Disease Research, 12(4), 234–238.

    Article  CAS  Google Scholar 

  5. Mark Waddingham, T., Amanda Edgley, J., Tsuchimochi, H., Darren Kelly, J., Shirai, M., & James Pearson, T. (2015). Contractile apparatus dysfunction early in the pathophysiology of diabetic cardiomyopathy. World Journal of Diabetes, 6(7), 943–960.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hamblin, M., Friedman, D. B., Hill, S., Caprioli, R. M., Smith, H. M., & Hill, M. F. (2007). Alterations in the diabetic myocardial proteome coupled with increased myocardial oxidative stress underlies diabetic cardiomyopathy. Journal of Molecular and Cellular Cardiology, 42, 884–895.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Adeghate, E. (2004). Molecular and cellular basis of the aetiology and management of diabetic cardiomyopathy: A short review. Molecular and Cellular Biochemistry, 261, 187–191.

    Article  PubMed  CAS  Google Scholar 

  8. Robertson, A. P. (2004). Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet beta cells in diabetes. Journal of Biological Chemistry, 279, 42351–42354.

    Article  PubMed  CAS  Google Scholar 

  9. Zhou, S., Sun, W., Zhang, Z., et al. (2014). The role of Nrf2-mediated pathway in cardiac remodeling and heart failure. Oxidative Medicine and Cellular Longevity, 1, 260429.

    Google Scholar 

  10. Erkens, R., Kramer, C. M., Luckstadt, W., Panknin, C., Krause, L., Weidenbach, M., et al. (2015). Left ventricular diastolic dysfunction in Nrf2 knockout mice is associated with cardiac hypertrophy, decreased expression of SERCA2a, and preserved endothelial function. Free Radical Biology and Medicine, 89, 906–917.

    Article  PubMed  CAS  Google Scholar 

  11. Mozaffarian, D., Benjamin, E. J., Go, A. S., et al. (2015). Heart disease and stroke statistics-2016 update: A report from the American Heart Association. Circulation, 133(4), e38–e360.

    Article  PubMed  Google Scholar 

  12. Li, H., Yao, W., Irwin, M. G., et al. (2015). Adiponectin ameliorates hyperglycemia-induced cardiac hypertrophy and dysfunction by concomitantly activating Nrf2 and Brg1. Free Radical Biology and Medicine, 84, 311–321.

    Article  PubMed  CAS  Google Scholar 

  13. Calvert, J. W., Jha, S., Gundewar, S., Elrod, J. W., Ramachandran, A., et al. (2009). Hydrogen sulfide mediates cardioprotection through Nrf2 signaling. Circulation Research, 105, 365–374.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Tian, H., Zhang, B., Di, J., Jiang, G., Chen, F., Li, H., et al. (2012). Keap1: One stone kills three birds Nrf 2, IKKbeta and Bcl-2/Bcl-xL. Cancer Letters, 325, 26–34.

    Article  PubMed  CAS  Google Scholar 

  15. Zhang, Z., et al. (2014). Sulforaphane prevents the development of cardiomyopathy in type 2 diabetic mice probably by reversing oxidative stress-induced inhibition of LKB1/AMPK pathway. Journal of Molecular and Cellular Cardiology, 77, 42–52.

    Article  PubMed  CAS  Google Scholar 

  16. Sathibabu Uddandrao, V. V., Brahmanaidu, P., & Saravanan, G. (2016). Therapeutical perspectives of S-allylcysteine: Effect on diabetes and other disorders in animal models. Cardiovascular & Hematological Agents in Medicinal Chemistry. doi:10.2174/1871525714666160418114120.

    Article  Google Scholar 

  17. Saravanan, G., & Ponmurugan, P. (2012). Antidiabetic effect of S-allylcysteine: Effect on thyroid hormone and circulatory antioxidant system in experimental diabetic rats. Journal of Diabete and its Complications, 26, 280–285.

    Article  Google Scholar 

  18. Brahmanaidu, P., Sathibabu Uddandrao, V. V., Pothani, S., Naik, R. R., Begum, M. S., Varatharaju, C., et al. (2016). Effects of S-allylcysteine on biomarkers of polyol pathway in experimental type II diabetes in rats. Canadian Journal of Diabetes, 40, 442–448.

    Article  Google Scholar 

  19. Padiya, R., & Banerjee, S. K. (2013). Garlic as an anti-diabetic agent: Recent progress and patent reviews. Recent Patents on Food, Nutrition & Agriculture, 5, 105–127.

    Article  CAS  Google Scholar 

  20. Das, D. K. (2007). Hydrogen sulfide preconditioning by garlic when it starts to smell. The American Journal of Physiology-Heart and Circulatory Physiology, 293, 2629–2630.

    Article  CAS  Google Scholar 

  21. Erejuwa, O. O., Sulaiman, S. A., AbWahab, M. S., Sirajudeen, K. N., Salleh, S., et al. (2012). Honey supplementation in spontaneously hypertensive rats elicits antihypertensive effect via amelioration of renal oxidative stress. Oxidative Medicine and Cellular Longevity, 2012, 374037.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Palsamy, P., & Subramanian, S. (2011). Resveratrol protects diabetic kidney by attenuating hyperglycemia-mediated oxidative stress and renal inflammatory cytokines via Nrf2–Keap1 signaling. Biochimica et Biophysica Acta, 1812, 719–731.

    Article  PubMed  CAS  Google Scholar 

  23. Amagase, H., Petesch, B. L., Matsuura, H., Kasuga, S., & Itakura, Y. (2001). Intake of garlic and its bioactive components. Journal of Nutrition, 131, 955S–962S.

    Article  PubMed  CAS  Google Scholar 

  24. Motohashi, H., & Yamamoto, M. (2004). Nrf2–Keap1 defines a physiologically important stress response mechanism. Trends in Molecular Medicine, 10, 549–557.

    Article  PubMed  CAS  Google Scholar 

  25. Reuland, D. J., McCord, J. M., & Hamilton, K. L. (2013). The role of nrf2 in the attenuation of cardiovascular disease. Exercise and Sport Sciences Reviews, 41, 162–168.

    Article  PubMed  Google Scholar 

  26. Hiramatsu, K., Tsuneyoshi, T., Ogawa, T., & Morihara, N. (2016). Aged garlic extract enhances heme oxygenase-1 and glutamate–cysteine ligase modifier subunit expression via the nuclear factor erythroid 2-related factor 2-antioxidant response element signaling pathway in human endothelial cells. Nutrition Research, 36, 143–149.

    Article  PubMed  CAS  Google Scholar 

  27. Kundu, J. K., & Surh, Y. J. (2008). Inflammation: Gearing the journey to cancer. Mutation Research, 659, 15–30.

    Article  PubMed  CAS  Google Scholar 

  28. Sun, Z., Chin, Y. E., & Zhang, D. D. (2009). Acetylation of Nrf2 by p300/CBP augments promoter-specific DNA binding of Nrf2 during the antioxidant response. Molecular and Cellular Biology, 29, 2658–2672.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Nioi, P., McMahon, M., Itoh, K., Yamamoto, M., & Hayes, J. D. (2003). Identification of a novel Nrf2-regulated antioxidant response element (ARE) in the mouse NAD(P)H:quinone oxidoreductase 1 gene: Reassessment of the ARE consensus sequence. Biochemical Journal, 374, 337–348.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Kohda, K., Goda, H., Itoh, K., Samejima, K., & Fukuuchi, T. (2013). Aged garlic extract reduces ROS production and cell death induced by 6-hydroxydopamine through activation of the Nrf2–ARE pathway in SH-SY5Y cells. Pharmacology & Pharmacy, 4, 31–40.

    Article  CAS  Google Scholar 

  31. Khatua, T. N., Adela, R., & Banerjee, S. K. (2013). Garlic and cardioprotection: Insights into the molecular mechanisms. Canadian Journal of Physiology and Pharmacology, 91, 448–458.

    Article  PubMed  CAS  Google Scholar 

  32. Hatcher, H., Planalp, R., Cho, J., Torti, F. M., & Torti, S. V. (2008). Curcumin: From ancient medicine to current clinical trials. Cellular and Molecular Life Sciences. CMLS, 65, 1631–1652.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Li, W., Wu, M., Tang, L., et al. (2014). Novel curcumin analogue 14p protects against myocardial ischemia reperfusion injury through Nrf2-activating anti-oxidative activity. Toxicology and Applied Pharmacology. doi:10.1016/j.taap.2014.12.001.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Baird, L., & Dinkova-Kostova, A. T. (2011). The cytoprotective role of the Keap1–Nrf2 pathway. Archives of Toxicology, 85, 241–272.

    Article  PubMed  CAS  Google Scholar 

  35. Kaspar, J. W., Niture, S. K., & Jaiswal, A. K. (2009). Nrf 2:INrf2 (Keap1) signaling in oxidative stress. Free Radical Biology and Medicine, 47, 1304–1309.

    Article  PubMed  CAS  Google Scholar 

  36. Calvert, J. W., Elston, M., Nicholson, C. K., et al. (2010). Genetic and pharmacologic hydrogen sulfide therapy attenuates ischemia-induced heart failure in mice. Circulation, 122(1), 11–19.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Shehzad, A., & Lee, Y. S. (2013). Molecular mechanisms of curcumin action: Signal transduction. BioFactors, 39, 27–36.

    Article  PubMed  CAS  Google Scholar 

  38. Niture, S. K., & Jaiswal, A. K. (2011). INrf2 (Keap1) targets Bcl-2 degradation and controls cellular apoptosis. Cell Death and Differentiation, 18, 439–451.

    Article  PubMed  CAS  Google Scholar 

  39. Ashrafian, H., Czibik, G., Bellahcene, M., Aksentijevic, D., et al. (2012). Fumarate is cardioprotective via activation of the Nrf2 antioxidant pathway. Cell Metabolism, 15, 361–371.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Zheng, H., et al. (2011). Therapeutic potential of Nrf2 activators in streptozotocin-induced diabetic nephropathy. Diabetes, 60, 3055–3066.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Wu, H., et al. (2015). Metallothionein plays a prominent role in the prevention of diabetic nephropathy by sulforaphane via up-regulation of Nrf2. Free Radical Biology and Medicine, 89, 431–442.

    Article  PubMed  CAS  Google Scholar 

  42. Tsuda, H., Ohshima, Y., Nomoto, H., Fujita, K., Matsuda, E., Iigo, M., et al. (2004). Cancer prevention by natural compounds. Drug Metabolism and Pharmacokinetics, 19, 245–263.

    Article  PubMed  CAS  Google Scholar 

  43. Femia, A. P., Caderni, G., Vignali, F., Salvadori, M., Giannini, A., Biggeri, A., et al. (2005). Effect of polyphenolic extracts from red wine and 4-OH-coumaric acid on 1,2-dimethylhydrazine-induced colon carcinogenesis in rats. European Journal of Nutrition, 44, 79–84.

    Article  PubMed  CAS  Google Scholar 

  44. Yeha, C.-T., Chingb, L.-C., & Yen, G.-C. (2009). Inducing gene expression of cardiac antioxidant enzymes by dietary phenolic acids in rats. Journal of Nutritional Biochemistry, 20, 163–171.

    Article  CAS  Google Scholar 

  45. Leung, L., Kwong, M., Hou, S., Lee, C., & Chan, J. Y. (2003). Deficiency of the Nrf1 and Nrf2 transcription factors results in early embryonic lethality and severe oxidative stress. The Journal of biological chemistry, 278, 48021–48029.

    Article  PubMed  CAS  Google Scholar 

  46. Iida, K., Itoh, K., Kumagai, Y., Oyasu, R., Hattori, K., Kawai, K., et al. (2004). Nrf2 is essential for the chemopreventive efficacy of oltipraz against urinary bladder carcinogenesis. Cancer Research, 64, 6424–6431.

    Article  PubMed  CAS  Google Scholar 

  47. Lee, J. M., Li, J., Johnson, D. A., Stein, T. D., Kraft, A. D., Calkins, M. J., et al. (2005). Nrf2, a multi-organ protector? FASEB Journal, 19, 1061–1066.

    Article  PubMed  CAS  Google Scholar 

  48. Martin, D., Rojo, A. I., Salinas, M., Diaz, R., Gallardo, G., Alam, J., et al. (2004). Regulation of heme oxygenase-1 expression through the phosphatidylinositol 3-kinase/Akt pathway and the Nrf2 transcription factor in response to the antioxidant phytochemical carnosol. The Journal of biological chemistry, 279, 8919–8929.

    Article  PubMed  CAS  Google Scholar 

  49. Keum, Y. S., Yu, S., Chang, P. P., Yuan, X., Kim, J. H., Xu, C., et al. (2006). Mechanism of action of sulforaphane: Inhibition of p38 mitogen-activated protein kinase isoforms contributing to the induction of antioxidant response element-mediated heme oxygenase-1 in human hepatoma HepG2 cells. Cancer Research, 66, 8804–8813.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank for the management of K.S. Rangasamy College of Arts and Science (Autonomous) and Department of Science and Technology (DST-SERB) for providing financial support for this work (Ref No: SR/SO/HS/0227/2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ganapathy Saravanan.

Ethics declarations

Conflict of interest

We declare that there is no competing financial interest for this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sathibabu Uddandrao, V.V., Brahmanaidu, P., Nivedha, P.R. et al. Beneficial Role of Some Natural Products to Attenuate the Diabetic Cardiomyopathy Through Nrf2 Pathway in Cell Culture and Animal Models. Cardiovasc Toxicol 18, 199–205 (2018). https://doi.org/10.1007/s12012-017-9430-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-017-9430-2

Keywords

Navigation