Skip to main content
Log in

Biological Selenium Nanoparticles in Quail Nutrition: Biosynthesis and its Impact on Performance, Carcass, Blood Chemistry, and Cecal Microbiota

  • Research
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

This study was conducted to examine the influence of dietary supplementation of biological nano-selenium (BNSe) on productive performance, hematology, blood chemistry, antioxidant status, immune response, cecal microbiota, and carcass traits of quails. In total, 180 Japanese quails (1 week old) were randomly allocated into four groups, with five replicates of nine chicks each in a complete randomized design. The 1st group was fed a control diet without BNSe, and the 2nd, 3rd, and 4th treatments were fed diets supplemented with BNSe (0.2, 0.4, and 0.6 g /kg feed, respectively). The best level of BNSe in body weight (BW) and body weight gain (BWG) parameters was 0.4 g/kg diet. Feed conversion was improved (P < 0.01) by adding BNSe in quail feed compared with the basal diet without any supplementation. The inclusion of different BNSe levels (0.2, 0.4, 0.6 g/kg) exhibited an insignificant influence on all carcass traits. The dietary addition of BNSe (0.4 and 0.6 g/kg) significantly augmented aspartate aminotransferase (AST) activity (P = 0.0127), total protein and globulin (P < 0.05), white blood cells (WBCs) (P = 0.031), and red blood cells (RBCs) (P = 0.0414) compared with the control. The dietary BNSe supplementation significantly improved lipid parameters, antioxidant and immunological indices, and increased selenium level in the blood (P < 0.05). BNSe significantly increased (P = 0.0003) lactic acid bacteria population number and lowered the total number of yeasts, molds, total bacterial count, E. coli, Coliform, Salmonella, and Enterobacter (P < 0.0001). In conclusion, adding BNSe up to 0.4 and 0.6 g/kg can boost the growth, lactic acid bacteria population number, hematology, immunological indices, antioxidant capacity, and lipid profile, as well as decline intestinal pathogens in growing quail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

The data presented in this study are available on request from the corresponding authors.

References

  1. Shabani R, Fakhraei J, Yarahmadi HM, Seidavi A (2019) Effect of different sources of selenium on performance and characteristics of immune system of broiler chickens. Rev Bras Zoot 48:e20180256

    Article  Google Scholar 

  2. Zaki A, Jiang S, Zaghloul S, El-Rayes TK, Saleh AA, Azzam MM, Ragni M, Alagawany M (2023) Betaine as an alternative feed additive to choline and its effect on performance, blood parameters, and egg quality in laying hens rations. Poult Sci 102:102710

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Azab M, El-Sayed HS, El-Habbaa AS (2019) Antioxidant and immunomodulatory effects of nano-selenium on response of broilers to ND vaccine. Assiut Vet Med J 65(161):174–185

    Article  Google Scholar 

  4. Farag MR, Zizzadoro C, Alagawany M, Abou-Zeid SM, Mawed SA, El Kholy MS, Di Cerbo A, Azzam MM, Mahdy EAA, Khedr MHE, Elhady WM (2023) In ovo protective effects of chicoric and rosmarinic acids against Thiacloprid-induced cytotoxicity, oxidative stress, and growth retardation on newly hatched chicks. Poult Sci 102:102487

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Saeed M, Afzal Z, Afzal F, Khan RU, Elnesr SS, Alagawany M, Chen H (2023) Use of postbiotic as growth promoter in poultry industry- current knowledge and future prospects. Food Sci Anim Resour. https://doi.org/10.5851/kosfa.2023.e52

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hilty FM, Arnold M, Hilbe M, Teleki A, Knijnenburg JT, Ehrensperger F, Hurrell RF, Pratsinis SE, Langhans W, Zimmermann MB (2010) Iron from nanocompounds containing iron and zinc is highly bioavailable in rats without tissue accumulation. Nature Nanotechnol 5(5):374–380

    Article  CAS  Google Scholar 

  7. Bao-hua X, Zi-rong X, Mei-sheng X, Cai-hong H, Yue-song D, Li X (2003) Effect of nano red elemental selenium on GPx activity of broiler chick kidney cells in vitro. Wuhan Univ J Nat Sci 8:1161–1166

    Article  Google Scholar 

  8. Giamouri E, Fortatos E, Pappas AC, Papadomichelakis G (2023) Comparative study between dietary nanoelemental, inorganic, and organic selenium in broiler chickens: effects on meat fatty acid composition and oxidative stability. Sustainability 15(12):9762

    Article  CAS  Google Scholar 

  9. Alagawany M, Qattan SY, Attia YA, El-Saadony MT, Elnesr SS, Mahmoud MA, Reda FM (2021) Use of chemical nano-selenium as an antibacterial and antifungal agent in quail diets and its effect on growth, carcasses, antioxidant, immunity and caecal microbes. Animals 11(11):3027. https://doi.org/10.3390/ani11113027

    Article  PubMed  PubMed Central  Google Scholar 

  10. Dawood MAO, Basuini MFE, Yilmaz S, Abdel-Latif HMR, Kari ZA, Abdul Razab MKA, Ahmed HA, Alagawany M, Gewaily MS (2021) Selenium nanoparticles as a natural antioxidant and metabolic regulator in aquaculture: a review. Antioxidants 10:1364

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Al-Sagheer AA, Alagawany M, Bassiony SS, Shehata AM, El-Metwally AE, El-Kholy MS (2023) Inactivated Saccharomyces cerevisiae and selenium as alternatives to antibiotic in rabbits reared under summer conditions: effects on growth, nutrient utilization, cecal fermentation, blood components, and intestinal architecture. Anim Feed Sci Technol 302:115688

    Article  CAS  Google Scholar 

  12. Wang RR, Pan XJ, Peng ZQ (2009) Effects of heat exposure on muscle oxidation and protein functionalities of pectoralis majors in broilers. Poult Sci 88(5):1078–1084

    Article  PubMed  CAS  Google Scholar 

  13. Surai PF, Kochish II, Velichko OA (2017) Nano-Se assimilation and action in poultry and other monogastric animals: is gut microbiota an answer? Nanoscale Res Lett 12(1):612. https://doi.org/10.1186/s11671-017-2383-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Zhang JS, Gao XY, Zhang LD, Bao YP (2001) Biological effects of a nano red elemental selenium. BioFactors 15(1):27–38

    Article  PubMed  Google Scholar 

  15. Ahmadi M, Ahmadian A, Seidavi AR (2018) Effect of different levels of nano-selenium on performance, blood parameters, immunity and carcass characteristics of broilerchickens. Poult Sci J 6(1):99–108

    Google Scholar 

  16. Zhou X, Wang YJPS (2011) Influence of dietary nano elemental selenium on growth performance, tissue selenium distribution, meat quality, and glutathione peroxidase activity in Guangxi Yellow chicken. Poult Sci 90(3):680–686

    Article  PubMed  CAS  Google Scholar 

  17. Cai SJ, Wu CX, Gong LM, Song T, Wu H, Zhang LY (2012) Effects of nano-selenium on performance, meat quality, immune function, oxidation resistance, and tissue selenium content in broilers. Poult Sci 91(10):2532–2539

    Article  PubMed  CAS  Google Scholar 

  18. Boostani A, Sadeghi AA, Mousavi SN, Chamani M, Kashan N (2015) Effects of organic, inorganic, and nano-Se on growth performance, antioxidant capacity, cellular and humoral immune responses in broiler chickens exposed to oxidative stress. Livest Sci 178:330–336. https://doi.org/10.1016/j.livsci.2015.05.004

    Article  Google Scholar 

  19. Gangadoo S, Stanley D, Hughes RJ, Moore RJ, Chapman J (2016) Nanoparticles in feed: progress and prospects in poultry research. Trends Food Sci Technol 58:115–126

    Article  CAS  Google Scholar 

  20. Khajeh BM, Afsharmanesh M, Espahbodi M (2022) Dietary supplementation with biosynthesised nano-selenium affects growth, carcass characteristics, meat quality and blood parameters of broiler chickens. Anim Prod Sci 62:254–262

    Article  Google Scholar 

  21. Xia M, Zhang H, Hu C, Xu Z (1956) Effect of nano-selenium on growth performance and antioxidant function of broiler chicken. Acta Nutrimenta Sinica 27:307–310

    Google Scholar 

  22. Shi L, Xun W, Yue W, Zhang C, Ren Y, Liu Q, Shi L (2011) Effect of elemental nano-selenium on feed digestibility, rumen fermentation, and purine derivatives in sheep. Anim Feed Sci Technol 163(2–4):136–142

    Article  CAS  Google Scholar 

  23. Al-Khafaji FR, Ibrahim MK (2019) The effectiveness of nano-selenium and vitamin e added to the diet in improving the productive efficiency for broiler chickens exposed to thermal stress’. Plant Archives 19(2):1239–1246

    Google Scholar 

  24. Jamima J, Veeramani P, Kumanan K, Kanagaraju P (2020) Production performance, hematology and serum biochemistry of commercial broilers supplemented with nano selenium and other anti-stressors during summer. Indian J Anim Res 54(11):1385–1390

    Google Scholar 

  25. Sheiha AM, Abdelnour SA, Abd El-Hack ME, Khafaga AF, Metwally KA, Ajarem JS, El-Saadony MT (2020) Effects of dietary biological or chemical-synthesized nano-selenium supplementation on growing rabbits exposed to thermal stress. Animals 10(3):430

    Article  PubMed  PubMed Central  Google Scholar 

  26. Li X, Xu H, Chen ZS, Chen G (2011) Biosynthesis of nanoparticles by microorganisms and their applications. J Nanomater 2011(270974):1–16. https://doi.org/10.1155/2011/270974

    Article  CAS  Google Scholar 

  27. Jianhua H, Ohtsuka A, Hayashi K (2000) Selenium influences growth via thyroid hormone status in broiler chickens. Br J Nutr 84(5):727–732. https://doi.org/10.1017/S0007114500002087

    Article  PubMed  CAS  Google Scholar 

  28. El-Deep MH, Shabaan M, Assar MH, Attia KM, Sayed MAM (2017) Comparative effects of different dietary selenium sources on productive performance, antioxidative properties and immunity in local laying hens exposed to high ambient temperature. J Anim Poult Prod 8(9):335–343

    Google Scholar 

  29. Moreno-Reyes R, Egrise D, Nève J, Pasteels JL, Schoutens A (2001) Selenium deficiency-induced growth retardation is associated with an impaired bone metabolism and osteopenia. J Bone Miner Res 16(8):1556–1563

    Article  PubMed  CAS  Google Scholar 

  30. Saleh AA, Ebeid TA (2019) Feeding sodium selenite and nano-selenium stimulates growth and oxidation resistance in broilers. South Afr J Anim Sci 49(1):176–183

    Article  CAS  Google Scholar 

  31. Arvat E, Broglio F, Ghigo E (2000) Insulin-like growth factor I: implications in aging. Drugs Aging 16:29–40

    Article  PubMed  CAS  Google Scholar 

  32. Zhang J, Wang X, Xu T (2008) Elemental selenium at nano size (Nano-Se) as a potential chemopreventive agent with reduced risk of selenium toxicity: comparison with se-methylselenocysteine in mice. Toxicol Sci 101(1):22–31

    Article  PubMed  CAS  Google Scholar 

  33. Ebeid TA, Zeweil HS, Basyony MM, Dosoky WM, Badry H (2013) Fortification of rabbit diets with vitamin E or selenium affects growth performance, lipid peroxidation, oxidative status and immune response in growing rabbits. Livest Sci 155(2–3):323–331

    Article  Google Scholar 

  34. Heindl J, Ledvinka Z, Englmaierova M, Zita L, Tumova E (2010) The effect of dietary selenium sources and levels on performance, selenium content in muscle and glutathione peroxidase activity in broiler chickens. Czeh J Anim Sci 55(12):572–578

    Article  CAS  Google Scholar 

  35. Sevim Ö, Ahsan U, Tatli O, Kuter E, Khamseh EK, Temiz AR, Önol AG (2022) Effect of nano-selenium and different stocking densities on performance, carcass yield, meat quality, and feathering score of broilers. Ankara Üniversitesi Veteriner Fakültesi Dergisi 70(1):29–36

    Article  Google Scholar 

  36. Bakhshalinejad R, Hassanabadi A, Swick RA (2019) Dietary sources and levels of selenium supplements affect growth performance, carcass yield, meat quality and tissue selenium deposition in broilers. Animal Nutrition 5(3):256–263

    Article  PubMed  PubMed Central  Google Scholar 

  37. Emam AM, Elnesr SS, El-Full EA, Mahmoud BY, Elwan H (2023) Influence of improved microclimate conditions on growth and physiological performance of two Japanese quail lines. Animals 13(6):1118

    Article  PubMed  PubMed Central  Google Scholar 

  38. Shwetha HS, Narayana Swamy M, Srinivas RB, Kalmath GP, Byregowda TR, Veena MP, Anitha MM, Rajendran D (2022) Effect of dietary supplementation of nano-selenium and nano-curcumin on liver and kidney histology in broiler chickens. Pharma Innov J SP-11(10):662–665

    Google Scholar 

  39. Mobaraki MA, Shahryar HA, Dizaji AA (2013) The effects of vitamin E-Se supplemented on some of serum biochemical parameters in the laying Japanese quail. Bull Environ Pharmacol Life Sci 2(10):29–32

    CAS  Google Scholar 

  40. Mohapatra P, Swain RK, Mishra SK, Behera T, Swain P, Mishra SS, Jayasankar P (2014) Effects of dietary nano-selenium on tissue selenium deposition, antioxidant status and immune functions in layer chicks. Int J Pharmacol 10(3):160–167

    Article  CAS  Google Scholar 

  41. Mohamed HS, Rizk YS, Elslamony AE, Soliman AA, Ebrahim AF (2016) Study the relationship between selenium and heat shock proteins under heat stress for local sinai chickens strain. Egypt Poult Sci J 36(1):337–354

    Article  Google Scholar 

  42. Rehman R, Sial N, Ismail A, Hussain S, Abid S, Javed M, Ayoub M (2022) Growth response in Oryctolagus cuniculus to selenium toxicity exposure ameliorated with vitamin E. BioMed Res Int 2022:8216685

    Article  PubMed  PubMed Central  Google Scholar 

  43. Eid YZ, Omara Y, Ragab A, Ismail A, Zommara M, Dawood MA (2023) Mitigation of imidacloprid toxicity in poultry chicken by selenium nanoparticles: growth performance, lipid peroxidation, and blood traits. Biol Trace Element Res 201(11):5379–5388

    Article  CAS  Google Scholar 

  44. Dalia AM, Loh TC, Sazili AQ, Jahromi MF, Samsudin AA (2017) The effect of dietary bacterial organic selenium on growth performance, antioxidant capacity, and Selenoproteins gene expression in broiler chickens. BMC Vet Res 13:1–11

    Article  Google Scholar 

  45. Abdelnour SA, Alagawany M, Hashem NM, Farag MR, Alghamdi ES, Hassan FU, Bilal RM, Elnesr SS, Dawood MAO, Nagadi SA, Elwan HAM, Almasoudi AG, Attia YA (2021) Nanominerals: fabrication methods, benefits and hazards, and their applications in ruminants with special reference to selenium and zinc nanoparticles. Animals 11(7):1916

    Article  PubMed  PubMed Central  Google Scholar 

  46. Selim NA, Radwan NL, Youssef SF, Eldin TS, Elwafa SA (2015) Effect of inclusion inorganic, organic or nano selenium forms in broiler diets on: 1-growth performance, carcass and meat characteristics. Int J Poult Sci 14(3):135

    Article  CAS  Google Scholar 

  47. Khazraie S, Ghazanfarpoor R (2015) Effect of nano-selenium particles and sodium selenite on performance, glutathione peroxidase and superoxide dismutase of quail under heat stress. Int J Rev Life Sci 5(1):875–882

    Google Scholar 

  48. Bealish AMA, Mona ASA, Mostafa R, Nadia L, Salah Eldin TA (2018) Evaluation of using nano and inorganic forms of selenium in feed of parents and growing chicks of Silver Montazah reared during winter season. Egypt Poult Sci J 38(4):1185–1206

    Article  Google Scholar 

  49. Elsaid AE (2015) Influence of in-ovo injection with nanoparticles selenium (SeNPs) on growth performance, carcass yield and immune status of broiler chicks. PhD Thesis, Damietta University, Faculty of Agriculture, Damietta, Egypt

  50. Radwan NL, Eldin TS, El-Zaiat AA, Mostafa MA (2015) Effect of dietary nano-selenium supplementation on selenium content and oxidative stability in table eggs and productive performance of laying hens. Int J Poult Sci 14(3):161. https://doi.org/10.3923/ijps.2015.161.176

    Article  CAS  Google Scholar 

  51. Emara SS (2019) Comparative effects of nano-selenium and sodium selenite supplementation on blood biochemical changes in relation to growth performance of growing New Zealand white rabbits. Arab J Nuclear Sci Appl 52(4):1–14. https://doi.org/10.21608/AJNSA.2019.5423.1124

    Article  Google Scholar 

  52. Oppenheimer JH, Schwartz HL, Lane JT, Thompson MP (1991) Functional relationship of thyroid hormone-induced lipogenesis, lipolysis, and thermogenesis in the rat. J Clin Investig 87(1):125–132

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Vunta H, Davis F, Palempalli UD, Bhat D, Arner RJ, Thompson JT, Prabhu KS (2007) The anti-inflammatory effects of selenium are mediated through 15-deoxy-Δ12, 14-prostaglandin J2 in macrophages. J Biol Chem 282(25):17964–17973

    Article  PubMed  CAS  Google Scholar 

  54. Larsen CT, Pierson FW, Gross WB (1997) Effect of dietary selenium on the response of stressed and unstressed chickens to Escherichia coli challenge and antigen. Biol Trace Elem Res 58:169–176

    Article  PubMed  CAS  Google Scholar 

  55. Ghazanfarpoor R, Talebi E, Abedi A (2014) Contemplation upon nano red selenium and sodium selenite on antioxidant enzymes in quail under heat stress. Int J Sci Inventions Today 3:556–565

    Google Scholar 

  56. Aparna N, Karunkaran R, Parthiban M (2017) Effect of selenium nano particles on glutathione peroxidase mRNA gene expression in broiler chicken. Indian J Sci Technol 10(32):1–5

    Article  Google Scholar 

  57. Zhang T, Qi M, Wu Q, Xiang P, Tang D, Li Q (2023) Recent research progress on the synthesis and biological effects of selenium nanoparticles. Front Nutr 10:1183487

    Article  PubMed  PubMed Central  Google Scholar 

  58. Kilany OE, Abdallah OM, Youssef FM, Mabrouk MM (2023) Clinicopathological Studies on the Effect of Nano Selenium Particles in Broilers. J Adv Vet Res 13(3):536–539

    Google Scholar 

  59. Mizutani T, Goto C, Totsuka T (2000) Mammalian selenocysteine tRNA, its enzymes and selenophosphate. J Health Sci 46(6):399–404. https://doi.org/10.1248/jhs.46.399

    Article  CAS  Google Scholar 

  60. Pilarczyk B, Jankowiak D, Tomza-Marciniak A, Pilarczyk R, Sablik P, Drozd R, Skólmowska M (2012) Selenium concentration and glutathione peroxidase (GSH-Px) activity in serum of cows at different stages of lactation. Biol Trace Elem Res 147:91–96. https://doi.org/10.1007/s12011-011-9271-y

    Article  PubMed  CAS  Google Scholar 

  61. Burton RM, Higgins PJ, McConnell KP (1977) Reaction of selenium with immunoglobulin molecules. Biochimica et Biophys Acta (BBA)-Protein Struct 493(2):323–331. https://doi.org/10.1016/0005-2795(77)90188-X

    Article  CAS  Google Scholar 

  62. Bień D, Michalczuk M, Łysek-Gładysińska M, Jóźwik A, Wieczorek A, Matuszewski A, Konieczka P (2023) Nano-sized selenium maintains performance and improves health status and antioxidant potential while not compromising ultrastructure of breast muscle and liver in chickens. Antioxidants 12(4):905

    Article  PubMed  PubMed Central  Google Scholar 

  63. Bami MK, Afsharmanesh M, Espahbodi M, Esmaeilzadeh E (2022) Effects of dietary nano-selenium supplementation on broiler chicken performance, meat selenium content, intestinal microflora, intestinal morphology, and immune response. J Trace Elem Med Biol 69:126897

    Article  Google Scholar 

  64. Mohammadi E, Janmohammadi H, Olyayee M, Helan JA, Kalanaky S (2020) Nano selenium improves humoral immunity, growth performance and breast-muscle selenium concentration of broiler chickens. Anim Prod Sci 60(16):1902–1910. https://doi.org/10.1071/AN19581

    Article  CAS  Google Scholar 

  65. Abdel-Moneim AME, Shehata AM, Mohamed NG, Elbaz AM, Ibrahim NS (2022) Synergistic effect of Spirulina platensis and selenium nanoparticles on growth performance, serum metabolites, immune responses, and antioxidant capacity of heat-stressed broiler chickens. Biol Trace Elem Res 200(2):768–779

    Article  PubMed  CAS  Google Scholar 

  66. Gulyás G, Csosz E, Prokisch J, Jávor A, Mézes M, Erdélyi M, Czeglédi L (2017) Effect of nano-sized, elemental selenium supplement on the proteome of chicken liver. J Anim Physiol Anim Nutr 101(3):502–510

    Article  Google Scholar 

  67. Xiao X, Yuan D, Wang YX, Zhan XA (2016) The protective effects of different sources of maternal selenium on oxidative stressed chick embryo liver. Biol Trace Elem Res 172:201–208

    Article  PubMed  CAS  Google Scholar 

  68. Pisoschi AM, Pop A (2015) The role of antioxidants in the chemistry of oxidative stress: a review. Eur J Med Chem 97:55–74. https://doi.org/10.1016/j.ejmech.2015.04.040

    Article  PubMed  CAS  Google Scholar 

  69. Dukare S, Mir NA, Mandal AB, Dev K, Begum J, Tyagi PK, Bhanja SK (2020) Comparative study on the responses of broiler chicken to hot and humid environment supplemented with different dietary levels and sources of selenium. J Thermal Biol 88:102515

    Article  CAS  Google Scholar 

  70. Aljumaily ASA, Aljumaily TKH (2021) The effect of the addition of nano selenium and vitamin E on productive performance and the characteristics of the physical and chemical carcass of broilers. In IOP Conf Ser Earth Environ Sci 735(1):012017 (IOP Publishing)

    Article  Google Scholar 

  71. Khajeh Bami M, Afsharmanesh M, Ebrahimnejad H (2020) Effect of dietary Bacillus coagulans and different forms of zinc on performance, intestinal microbiota, carcass and meat quality of broiler chickens. Probiotics Antimicrob Protein 12:461–472

    Article  CAS  Google Scholar 

  72. Hariharan H, Al-Harbi N, Karuppiah P, Rajaram S (2012) Microbial synthesis of selenium nanocomposite using Saccharomyces cerevisiae and its antimicrobial activity against pathogens causing nosocomial infection. Chalcogenide Lett 9(12):509–515

    CAS  Google Scholar 

  73. Stanley D, Geier MS, Chen H, Hughes RJ, Moore RJ (2015) Comparison of fecal and cecal microbiotas reveals qualitative similarities but quantitative differences. BMC Microbiol 15(1):1–11

    Article  Google Scholar 

  74. Nabi F, Arain MA, Hassan F, Umar M, Rajput N, Alagawany M, Liu J (2020) Nutraceutical role of selenium nanoparticles in poultry nutrition: a review. World Poult Sci J 76(3):459–471

    Article  Google Scholar 

  75. Malyugina S, Skalickova S, Skladanka J, Slama P, Horky P (2021) Biogenic selenium nanoparticles in animal nutrition: a review. Agriculture 11(12):1244

    Article  CAS  Google Scholar 

  76. Shaaban M, El-Mahdy AM (2018) Biosynthesis of Ag, Se, and ZnO nanoparticles with antimicrobial activities against resistant pathogens using waste isolate Streptomyces enissocaesilis. IET Nanobiotechnol 12(6):741–747

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Researchers Supporting Project (RSPD2024R731), King Saud University (Riyadh, Saudi Arabia).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to all works conducted in the present study. All authors have drafted, reviewed, revised, and approved the final manuscript.

Corresponding author

Correspondence to Mahmoud Alagawany.

Ethics declarations

Consent to Participate

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reda, F.M., Alagawany, M., Salah, A.S. et al. Biological Selenium Nanoparticles in Quail Nutrition: Biosynthesis and its Impact on Performance, Carcass, Blood Chemistry, and Cecal Microbiota. Biol Trace Elem Res (2023). https://doi.org/10.1007/s12011-023-03996-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12011-023-03996-3

Keywords

Navigation