Skip to main content
Log in

Determination of Serum Zinc and Phosphorus Levels in Patients with Hypothyroidism

  • Research
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract  

Various studies reported that serum zinc (Zn) and phosphorus (P) levels altered in patients with hypothyroidism and vice versa, but results were found inconsistent. It was aimed to find the association between serum Zn and P in patients with hypothyroidism. In this case–control study, a total of 100 subjects (50 newly diagnosed patients of hypothyroidism and 50 controls) were enrolled aged between 25 and 60 years. Biochemical parameters such as thyroid profile, serum Zn, and P were estimated in each subject. A p < 0.05 was considered statistically significant. The mean level of body mass index (BMI), thyroid-stimulating hormone (TSH), and serum P was found significantly elevated in cases compared to controls (p < 0.001). However, the mean level of total triiodothyronine (T3), thyroxine (T4), and serum Zn was found significantly reduced in cases compared to controls (p < 0.001). The serum Zn has shown a significant negative correlation with T3 and BMI among cases (r =  − 0.313 p < 0.05, r =  − 0.338 p < 0.05, respectively). However, serum P has shown a significant positive correlation with TSH and BMI among cases (r = 0.310 p < 0.05, r = 0.449 p < 0.01, respectively). Regression analysis indicated that serum Zn significantly predicted hypothyroidism (p < 0.00). Similarly, serum P significantly predicted hypothyroidism (p < 0.007). Results showed that serum Zn levels were significantly reduced and serum P levels were significantly elevated in cases compared to controls. The serum Zn and serum P both significantly associated with hypothyroidism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The data that support the findings of this study are not openly available due to reasons of sensitivity and are available from the corresponding author upon reasonable request.

References 

  1. Chiovato L, Magri F, Carlé A (2019) Hypothyroidism in context: where we’ve been and where we’re going. Adv Ther 36:47–58

    Article  PubMed  PubMed Central  Google Scholar 

  2. Chaker L, Razvi S, Bensenor IM, Azizi F, Pearce EN, Peeters RP (2022) Hypothyroidism (Primer). Nat Rev Dis Primers 8(1):30. https://doi.org/10.1038/s41572-022-00357-7

    Article  PubMed  Google Scholar 

  3. Chaker L, Bianco AC, Jonklaas J, Peeters RP (2017) Hypothyroidism. Lancet 390(10101):1550–1562. https://doi.org/10.1016/S0140-6736(17)30703-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Unnikrishnan AG, Kalra S, Sahay RK, Bantwal G, John M, Tewari N (2013) Prevalence of hypothyroidism in adults: an epidemiological study in eight cities of India. Indian J Endocrinol Metabol 17(4):647. https://doi.org/10.4103/2230-8210.113755

    Article  CAS  Google Scholar 

  5. Shahid MA, Ashraf MA, Sharma S (2023) Physiology, thyroid hormone. [Updated 2023 May 1]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK500006/

  6. Aktas G, Sit M, Dikbas O, Tekce BK, Savli H, Tekçe H, Alçelik A (2014) Could red cell distribution width be a marker in Hashimoto’s thyroiditis? Exp Clin Endocrinol Diabetes 122(10):572–574

    Article  CAS  PubMed  Google Scholar 

  7. Bilgin S, Tel BM, Kahveci G, Duman TT, Kurtkulagi O, Yurum S, Erturk A, Balci B, Aktas G (2021) Hypothyroidism is strongly correlated with mean platelet volume and red cell distribution width. Nat J Health Scis 6(1):7–10

    Article  CAS  Google Scholar 

  8. Wróblewski M, Wróblewska J, Nuszkiewicz J, Pawłowska M, Wesołowski R, Woźniak A (2023) The role of selected trace elements in oxidoreductive homeostasis in patients with thyroid diseases. Int J Mol Sci 24(5):4840

    Article  PubMed  PubMed Central  Google Scholar 

  9. Arora M (2018) Study of trace elements in patients of hypothyroidism with special reference to zinc and copper. Biomed J Sci Tech Res 6:11–16

    Google Scholar 

  10. Beserra JB, Morais JBS, Severo JS, Cruz KJC, de Oliveira ARS, Henriques GS, do Nascimento Marreiro D, (2021) Relation between zinc and thyroid hormones in humans: a systematic review. Biol Trace Elem Res 199:4092–4100

    Article  CAS  PubMed  Google Scholar 

  11. Turan E, Turksoy VA (2021) Selenium, zinc, and copper status in euthyroid nodular goiter: a cross-sectional study. Int J Prev Med 12:46

    PubMed  PubMed Central  Google Scholar 

  12. Baltaci AK, Mogulkoc R, Belviranli M (2013) Serum levels of calcium, selenium, magnesium, phosphorus, chromium, copper and iron–their relation to zinc in rats with induced hypothyroidism. Acta Clin Croat 52(2):151–156

    PubMed  Google Scholar 

  13. Fereig RM, Ibrahim RM, Khalil AM, Frey CF, Khalifa FA (2023) Evaluation of clinical and biochemical traits in Egyptian Barki sheep with different growth performances. Animals 13(6):962

    Article  PubMed  PubMed Central  Google Scholar 

  14. Qadeer HA, Bashir K (2023) Physiology, phosphate. [Updated 2022 Aug 29]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK560925/

  15. Goyal R, Jialal I (2023) Hyperphosphatemia. [Updated 2022 Jun 21]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK551586/

  16. Alcalde AI, Sarasa M, Raldúa D, Aramayona J, Morales R, Biber J, Murer H, Levi M, Sorribas V (1999) Role of thyroid hormone in regulation of renal phosphate transport in young and aged rats. Endocrinology 140(4):1544–1551

    Article  CAS  PubMed  Google Scholar 

  17. Sheehan MT (2016) Biochemical testing of the thyroid: TSH is the best and oftentimes, only test needed - a review for primary care. Clin Med Res 14(2):83–92. https://doi.org/10.3121/cmr.2016.1309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Asmelash D, Tesfa K, Biadgo B (2019) Thyroid dysfunction and cytological patterns among patients requested for thyroid function test in an endemic goiter area of Gondar. North West Ethiopia Int J Endocrinol 2019:9106767. https://doi.org/10.1155/2019/9106767

    Article  PubMed  Google Scholar 

  19. Makino T (1991) A sensitive, direct colorimetric assay of serum zinc using nitro-PAPS and microwell plates. Clin Chim Acta 197(3):209–220. https://doi.org/10.1016/0009-8981(91)90141-x

    Article  CAS  PubMed  Google Scholar 

  20. Gamst O, Try K (1980) Determination of serum-phosphate without deproteinization by ultraviolet spectrophotometry of the phosphomolybdic acid complex. Scand J Clin Lab Invest 40(5):483–486

    Article  CAS  PubMed  Google Scholar 

  21. Valdés S, Maldonado-Araque C, Lago-Sampedro A, Lillo-Muñoz JA, Garcia-Fuentes E, Perez-Valero V, Gutiérrez-Repiso C, Garcia-Escobar E, Goday A, Urrutia I, Peláez L (2017) Reference values for TSH may be inadequate to define hypothyroidism in persons with morbid obesity: diabetes study. Obesity 25(4):788–793. https://doi.org/10.1002/oby.21796

    Article  CAS  PubMed  Google Scholar 

  22. Kang C, Liu J, Zheng Y, Wang X, Yang L, Qiu S, Zhao Y, Lackey BN, Wu HE, Zhao N, Zhang X (2023) Association of high BMI with subclinical hypothyroidism in young, first-episode and drug-naive patients with major depressive disorder: a large-scale cross-sectional study. Eur Arch Psychiatry Clin Neurosci 273(1):183–190. https://doi.org/10.1007/s00406-022-01415-7

    Article  PubMed  Google Scholar 

  23. Nyrnes A, Jorde R, Sundsfjord J (2006) Serum TSH is positively associated with BMI. Int J Obes 30(1):100–105. https://doi.org/10.1038/sj.ijo.0803112

    Article  CAS  Google Scholar 

  24. Mele C, Mai S, Cena T, Pagano L, Scacchi M, Biondi B, Aimaretti G, Marzullo P (2022) The pattern of TSH and fT4 levels across different BMI ranges in a large cohort of euthyroid patients with obesity. Frontiers Endocrinol 13:1–2. https://doi.org/10.3389/fendo.2022.1029376

    Article  Google Scholar 

  25. Yan Y, Xu M, Wu M, Wang X, Li F, Zhang J, You L, Pan X, Feng W, Wu J, Chen C (2022) Obesity is associated with subclinical hypothyroidism in the presence of thyroid autoantibodies: a cross-sectional study. BMC Endocr Disord 22(1):1–8

    Article  Google Scholar 

  26. Severo JS, Morais JB, de Freitas TE, Andrade AL, Feitosa MM, Fontenelle LC, de Oliveira AR, Cruz KJ, do NascimentoMarreiro D (2019) The role of zinc in thyroid hormones metabolism. Int J Vitam Nutr Res. https://doi.org/10.1024/0300-9831/a000262

    Article  PubMed  Google Scholar 

  27. Sharma H, Kakadiya J (2023) Different novel biomarkers involved in diagnosing hypothyroidism. Egyptian J Int Med 35(1):28. https://doi.org/10.1186/s43162-023-00214-3

    Article  Google Scholar 

  28. Khan S, Tiwari D, Manger PT, Khan MM (2022) A study on serum magnesium and zinc levels in patients with hypothyroidism. Biochem Cell Arch 22(1):1493–1497 (DocID: https:// connectjournals.com/03896.2022.22.1493)

    Google Scholar 

  29. Tiwari D, Islam SS, Khan MM (2019) Correlation of serum copper, magnesium and zinc in essential hypertension. Biochem Cell Arch 19(1):1051–1056

    Google Scholar 

  30. Tiwari D, Kumar N, Alam R, Khan MM (2017) Evaluation of serum magnesium and zinc levels in patients with Type 2 diabetes mellitus. Int J Clin Biochem Res 4(3):245–248

    Google Scholar 

  31. Vrieling F, Stienstra R (2023) Obesity and dysregulated innate immune responses: impact of micronutrient deficiencies. Trends Immunol 44(3):217–230. https://doi.org/10.1016/j.it.2023.01.003

    Article  CAS  PubMed  Google Scholar 

  32. Ullah MI, Alameen AA, Al-Oanzi ZH, Eltayeb LB, Atif M, Munir MU, Ejaz H (2023) Biological role of zinc in liver cirrhosis: an updated review. Biomedicines 11(4):1094. https://doi.org/10.3390/biomedicines11041094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lu L, Huang Z, Wang X, Chen J (2023) Interaction between dietary selenium and zinc intakes on hypothyroidism. Biol Trace Elem Res 201(10):4667–4676. https://doi.org/10.1007/s12011-023-03563-w.

  34. Zavros A, Giannaki CD, Aphamis G, Roupa Z, Andreou E (2022) The effects of zinc and selenium supplementation on body composition and thyroid function in individuals with overweight or obesity: A systematic review. J Diet Suppl 20(4):643–671. https://doi.org/10.1080/19390211.2022.2072044.

  35. Baltaci AK, Dundar TK, Aksoy F, Mogulkoc R (2017) Changes in the serum levels of trace elements before and after the operation in thyroid cancer patients. Biol Trace Elem Res 175:57–64

    Article  CAS  PubMed  Google Scholar 

  36. Baltaci AK, Mogulkoc R (2017) Leptin, NPY, melatonin and zinc levels in experimental hypothyroidism and hyperthyroidism: the relation to zinc. Biochem Genet 55(3):223–233. https://doi.org/10.1007/s10528-017-9791-z

  37. Gammoh NZ, Rink L (2017) Zinc in infection and inflammation. Nutrients 9(6):624. https://doi.org/10.3390/nu9060624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sridevi D, Dambal AA, Sidrah AS, Padaki SK (2016) A study of serum magnesium, calcium and phosphorus in hypothyroidism. Int J Clin Biochem Res 3(2):236–239

    Article  Google Scholar 

  39. Jat RK, Panwar AK, Agarwal P, Sharma C, Bansal DP, Pareek A, Tyagi A, Mathur M, Agarwal P, Sharma C Sr, Pareek A Sr (2021) Assessment of serum minerals in subclinical hypothyroid and overt hypothyroid patients. Cureus 13(8):e16944. https://doi.org/10.7759/cureus.16944

    Article  PubMed  PubMed Central  Google Scholar 

  40. Chang X, Wang Y, Liu Y, Shen Y, Feng J, Liu Q, Jiang C, Yu J, Tang X, Jing G, Niu Q (2023) The prevalence of subclinical hypothyroidism in a pre-diabetes population and an analysis of related factors. Ann Med 55(1):643–651

    Article  PubMed  PubMed Central  Google Scholar 

  41. Gammage MD, Parle JV, Holder RL, Roberts LM, Hobbs FD, Wilson S, Sheppard MC, Franklyn JA (2007) Association between serum free thyroxine concentration and atrial fibrillation. Arch Intern Med 167(9):928–934

    Article  CAS  PubMed  Google Scholar 

  42. Diana T, Olivo PD, Chang YH, Wüster C, Kanitz M, Kahaly GJ (2020) Comparison of a novel homogeneous cyclic amp assay and a luciferase assay for measuring stimulating thyrotropin-receptor autoantibodies. European Thyroid J 9(2):67–72

    Article  CAS  Google Scholar 

  43. Kotb E, Mohamed El Mancy I, Ghounim Ramadan Mohamed I, Sayed Ahmed Ayoub H, Rashed AM, El-Nasser WS, Ismail Hamed H, Aladl Aladl H, Sabrh M, Eliwa A, Ghamry EM, Abdelhamed MR, Mahmoud TM (2023) Relationship between subclinical hypothyroidism and uremic pruritis in hemodialysis patients. Endocr Metab Immune Disord Drug Targets. https://doi.org/10.2174/1871530323666230509103021

    Article  PubMed  Google Scholar 

  44. Ağbaht K, Pişkinpaşa SV (2022) Serum TSH, 25 (OH) D and phosphorus levels predict weight loss in individuals with diabetes/prediabetes and morbid obesity: a single-center retrospective cohort analysis. BMC Endocr Disord 22(1):282. https://doi.org/10.1186/s12902-022-01202-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ginsberg C, Houben AJ, Malhotra R, Berendschot TT, Dagnelie PC, Kooman JP, Webers CA, Stehouwer CD, Ix JH (2019) Serum phosphate and microvascular function in a population-based cohort. Clin J Am Soc Nephrol 14(11):1626–1633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shimizu M, Fujii H, Kono K, Goto S, Watanabe K, Sakamoto K, Nishi S (2023) Clinical implication of consistently strict phosphate control for coronary and valvular calcification in incident patients undergoing hemodialysis. J Atheroscler Thromb 30: (Article ID 64159). https://doi.org/10.5551/jat.64159

  47. Wang M, Zhang J, Kalantar-Zadeh K, Chen J (2023) Focusing on phosphorus loads: from healthy people to chronic kidney disease. Nutrients 15(5):1236. https://doi.org/10.3390/nu15051236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Duse DA, Gröne M, Kramser N, Ortkemper M, Quast C, Voß F, Heramvand N, Kostev K, Kelm M, Horn P et al (2023) Elevated initial serum phosphate levels predict higher mortality and impaired neurological outcome in cardiac arrest patients with return of spontaneous circulation. Diagnostics 13(3):479. https://doi.org/10.3390/diagnostics13030479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dwaib HS, Ajouz G, AlZaim I, Rafeh R, Mroueh A, Mougharbil N, Ragi ME, Refaat M, Obeid O, El-Yazbi AF (2021) Phosphorus supplementation mitigates perivascular adipose inflammation–induced cardiovascular consequences in early metabolic impairment. J Am Heart Assoc 10(24):e023227. https://doi.org/10.1161/JAHA.121.023227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to the Prof. (Dr.) Abha Chandra, Dean, Integral Institute of Medical Sciences & Research (IIMSR) for the invaluable help and encouragement to carry out research work without any hindrance.

Author information

Authors and Affiliations

Authors

Contributions

"A.B. wrote the main manuscript text and C.D.E. prepared figures and tables. All authors reviewed the manuscript."

Corresponding author

Correspondence to Mohammad Mustufa Khan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee (IEC Approval No. IEC/IIMS&R/2022/15) and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed Consent

Written informed consent was obtained from all individual participants included in the study.

Conflicts of Interest

Authors declared that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, A.M., Khan, S., Inam, A.M.H. et al. Determination of Serum Zinc and Phosphorus Levels in Patients with Hypothyroidism. Biol Trace Elem Res (2023). https://doi.org/10.1007/s12011-023-03905-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12011-023-03905-8

Keywords

Navigation