Skip to main content

Advertisement

Log in

The Possible Mechanisms of Cu and Zn in the Treatment and Prevention of HIV and COVID-19 Viral Infection

  • Review
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Due to their unique properties and their potential therapeutic and prophylactic applications, heavy metals have attracted the interest of many researchers, especially during the outbreak of COVID-19. Indeed, zinc (Zn) and copper (Cu) have been widely used during viral infections. Zn has been reported to prevent excessive inflammatory response and cytokine storm, improve the response of the virus to Type I interferon (IFN-1), and enhance the production of IFN-a to counteract the antagonistic effect of SARS-CoV-2 virus protein on IFN. Additionally, Zn has been found to promote the proliferation and differentiation of T and B lymphocytes, thereby improving immune function, inhibiting RNA-dependent RNA polymerase (RdRp) in SARS- CoV-2 reducing the viral replication and stabilizing the cell membrane by preventing the proteolytic processing of viral polyprotein and proteases enzymes. Interestingly, Zn deficiency has been correlated with enhanced SARS-CoV-2 viral entry through interaction between the ACE2 receptor and viral spike protein. Along with zinc, Cu possesses strong virucidal capabilities and is known to be effective at neutralizing a variety of infectious viruses, including the poliovirus, influenza virus, HIV type 1, and other enveloped or nonenveloped, single- or double-stranded DNA and RNA viruses. Cu-related antiviral action has been linked to different pathways. First, it may result in permanent damage to the viral membrane, envelopes, and genetic material of viruses. Second, Cu produces reactive oxygen species to take advantage of the redox signaling mechanism to eradicate the virus. The present review focused on Zn and Cu in the treatment and prevention of viral infection. Moreover, the application of metals such as Cu and gold in nanotechnology for the development of antiviral therapies and vaccines has been also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data used are available in the review.

References

  1. Harper A et al (2021) “Viral Infections, the Microbiome, and Probiotics,” Front. Cell. Infect. Microbiol, vol. 10, Accessed: Nov. 30, 2022. [Online]. Available: https://www.frontiersin.org/articles/https://doi.org/10.3389/fcimb.2020.596166

  2. Eid J, Mougel M, Socol M (2020) Advances in continuous Microfluidics-Based Technologies for the study of HIV infection. Viruses 12 9, Art. no. 9, Sep. https://doi.org/10.3390/v12090982

  3. Shah KK, Verma R, Oleske JM, Scolpino A, Bogden JD (2019) “Essential trace elements and progression and management of HIV infection,” Nutr. Res, vol. 71, pp. 21–29. https://doi.org/10.1016/j.nutres.2019.08.001

  4. Karges J, Cohen SM (2021) Metal complexes as antiviral agents for SARS-CoV-2. ChemBioChem 22(16):2600–2607. https://doi.org/10.1002/cbic.202100186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sarkar PK, Das Mukhopadhyay C (2021) “Ayurvedic metal nanoparticles could be novel antiviral agents against SARS-CoV-2,” Int. Nano Lett, vol. 11, no. 3, pp. 197–203. https://doi.org/10.1007/s40089-020-00323-9

  6. Skalny AV, Aschner M, Tinkov AA (2021) “Chapter Eight - Zinc,” in Advances in Food and Nutrition Research, N. A. M. Eskin, Ed., in The Latest Research and Development of Minerals in Human Nutrition, vol. 96. Academic Press, pp. 251–310. https://doi.org/10.1016/bs.afnr.2021.01.003

  7. Pvsn KK et al (Jan. 2023) Comparative analysis of serum zinc, copper and Magnesium Level and their relations in Association with Severity and Mortality in SARS-CoV-2 patients. Biol Trace Elem Res 201(1):23–30. https://doi.org/10.1007/s12011-022-03124-7

  8. Yadav D et al (Dec. 2022) Association of iron-related biomarkers with severity and mortality in COVID-19 patients. J Trace Elem Med Biol Organ Soc Miner Trace Elem GMS 74:127075. https://doi.org/10.1016/j.jtemb.2022.127075

  9. Read SA, Obeid S, Ahlenstiel C, Ahlenstiel G (2019) “The Role of Zinc in Antiviral Immunity,” Adv. Nutr, vol. 10, no. 4, pp. 696–710. https://doi.org/10.1093/advances/nmz013

  10. Raha S, Mallick R, Basak S, Duttaroy AK (Sep. 2020) Is copper beneficial for COVID-19 patients? Med Hypotheses 142:109814. https://doi.org/10.1016/j.mehy.2020.109814

  11. “Nanomedicine for COVID-19: Potential of Copper Nanoparticles,” Biointerface Res. Appl. Chem., vol. 11, no. 3, pp. 10716–10728 (2020). https://doi.org/10.33263/BRIAC113.1071610728

  12. H. M et al., “SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor,” Cell, vol. 181, no. 2. https://doi.org/10.1016/j.cell.2020.02.052

  13. Tomo S, Karli S, Dharmalingam K, Yadav D, Sharma P (2020) “The Clinical Laboratory: A Key Player in Diagnosis and Management of COVID-19,” EJIFCC, vol. 31, no. 4, pp. 326–346, Nov.

  14. Petushkova AI, Zamyatnin AA (2020) “Papain-Like Proteases as Coronaviral Drug Targets: Current Inhibitors, Opportunities, and Limitations,” Pharmaceuticals, vol. 13, no. 10, Art. no. 10. https://doi.org/10.3390/ph13100277

  15. Gao Y et al (May 2020) Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science 368(6492):779–782. https://doi.org/10.1126/science.abb7498

  16. Choudhary S, Sreenivasulu K, Mitra P, Misra S, Sharma P (2021) “Role of Genetic Variants and Gene Expression in the Susceptibility and Severity of COVID-19,” Ann. Lab. Med, vol. 41, no. 2, pp. 129–138. https://doi.org/10.3343/alm.2021.41.2.129

  17. Tikellis C, Bernardi S, Burns WC (Jan. 2011) Angiotensin-converting enzyme 2 is a key modulator of the renin-angiotensin system in cardiovascular and renal disease. Curr Opin Nephrol Hypertens 20(1):62–68. https://doi.org/10.1097/MNH.0b013e328341164a

  18. Murray E, Tomaszewski M, Guzik TJ (2020) “Binding of SARS-CoV-2 and angiotensin-converting enzyme 2: clinical implications,” Cardiovasc. Res, vol. 116, no. 7, pp. e87–e89. https://doi.org/10.1093/cvr/cvaa096

  19. Tomo S, Saikiran G, Banerjee M, Paul S (2021) Selenium to selenoproteins - role in COVID-19. EXCLI J 20:781–791. https://doi.org/10.17179/excli2021-3530

    Article  PubMed  PubMed Central  Google Scholar 

  20. Madeddu P, Emanueli C, El-Dahr S (2007) “Mechanisms of Disease: the tissue kallikrein–kinin system in hypertension and vascular remodeling,” Nat. Clin. Pract. Nephrol, vol. 3, no. 4, Art. no. 4. https://doi.org/10.1038/ncpneph0444

  21. Glowacka I et al (2010) “Differential downregulation of ACE2 by the spike proteins of severe acute respiratory syndrome coronavirus and human coronavirus NL63,” J. Virol, vol. 84, no. 2, pp. 1198–1205. https://doi.org/10.1128/JVI.01248-09

  22. Karmouty-Quintana H, Thandavarayan RA, Keller SP, Sahay S, Pandit LM, Akkanti B (2020) “Emerging Mechanisms of Pulmonary Vasoconstriction in SARS-CoV-2-Induced Acute Respiratory Distress Syndrome (ARDS) and Potential Therapeutic Targets,” Int. J. Mol. Sci, vol. 21, no. 21, p. 8081. https://doi.org/10.3390/ijms21218081

  23. Yadav D, Birdi A, Tomo S, Charan J, Bhardwaj P, Sharma P (2021) “Association of Vitamin D Status with COVID-19 Infection and Mortality in the Asia Pacific region: A Cross-Sectional Study,” Indian J. Clin. Biochem. IJCB, vol. 36, no. 4, pp. 492–497. https://doi.org/10.1007/s12291-020-00950-1

  24. Khokhar M, Tomo S, Purohit P (Feb. 2022) MicroRNAs based regulation of cytokine regulating immune expressed genes and their transcription factors in COVID-19. Meta Gene 31:100990. https://doi.org/10.1016/j.mgene.2021.100990

  25. Tomo S, Banerjee M, Sharma P, Garg M (2021) “Does dehydroepiandrosterone sulfate have a role in COVID-19 prognosis and treatment?,” Endocr. Regul, vol. 55, no. 3, pp. 174–181. https://doi.org/10.2478/enr-2021-0019

  26. Rani I et al (2021) “Potential molecular mechanisms of zinc- and copper-mediated antiviral activity on COVID-19,” Nutr. Res, vol. 92, pp. 109–128. https://doi.org/10.1016/j.nutres.2021.05.008

  27. Dharmalingam K et al (Oct. 2021) Trace Elements as Immunoregulators in SARS-CoV-2 and other viral infections. Indian J Clin Biochem IJCB 36(4):416–426. https://doi.org/10.1007/s12291-021-00961-6

  28. Tomo S et al (Feb. 2021) Complement activation and coagulopathy - an ominous duo in COVID19. Expert Rev Hematol 14(2):155–173. https://doi.org/10.1080/17474086.2021.1875813

  29. Zayas JP, Mamede JI (Feb. 2022) HIV infection and spread between Th17 cells. Viruses 14(2):404. https://doi.org/10.3390/v14020404

  30. Margolis DM, Koup RA, Ferrari G (2017) HIV antibodies for treatment of HIV infection. Immunol Rev 275(1):313–323. https://doi.org/10.1111/imr.12506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hussein M, Molina MA, Berkhout B, Herrera-Carrillo E (2023) “A CRISPR-Cas Cure for HIV/AIDS,” Int. J. Mol. Sci, vol. 24, no. 2, p. 1563. https://doi.org/10.3390/ijms24021563

  32. Landovitz RJ, Scott H, Deeks SG (Jun. 2023) Prevention, treatment and cure of HIV infection. Nat Rev Microbiol. https://doi.org/10.1038/s41579-023-00914-1

  33. Fortner A, Bucur O (2022) mRNA-based vaccine technology for HIV. Discov Craiova Rom 10:e150. no. 210.15190/d.2022.9

    Article  Google Scholar 

  34. Mayor-Ibarguren A, Busca-Arenzana C, Robles-Marhuenda Á (2020) “A Hypothesis for the Possible Role of Zinc in the Immunological Pathways Related to COVID-19 Infection,” Front. Immunol, vol. 11, Accessed: Nov. 30, 2022. [Online]. Available: https://www.frontiersin.org/articles/https://doi.org/10.3389/fimmu.2020.01736

  35. Franklin RB, Costello LC (2009) “The important role of the apoptotic effects of zinc in the development of cancers,” J. Cell. Biochem, vol. 106, no. 5, pp. 750–757. https://doi.org/10.1002/jcb.22049

  36. Vogel-González M et al (Feb. 2021) Low zinc levels at Admission Associates with poor clinical outcomes in SARS-CoV-2 infection. Nutrients 13(2):562. https://doi.org/10.3390/nu13020562

  37. Marreiro D et al (2022) “Antiviral and immunological activity of zinc and possible role in COVID-19,” Br. J. Nutr, vol. 127, no. 8, pp. 1172–1179. https://doi.org/10.1017/S0007114521002099

  38. Rahman MT, Idid SZ (Feb. 2021) Can Zn be a critical element in COVID-19 treatment? Biol Trace Elem Res 199(2):550–558. https://doi.org/10.1007/s12011-020-02194-9

  39. Jarosz M, Olbert M, Wyszogrodzka G, Młyniec K, Librowski T (2017) “Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-κB signaling,” Inflammopharmacology, vol. 25, no. 1, pp. 11–24. https://doi.org/10.1007/s10787-017-0309-4

  40. Asl SH, Nikfarjam S, Majidi Zolbanin N, Nassiri R, Jafari R (Jul. 2021) Immunopharmacological perspective on zinc in SARS-CoV-2 infection. Int Immunopharmacol 96:107630. https://doi.org/10.1016/j.intimp.2021.107630

  41. Wessels I, Rolles B, Rink L (2020) “The Potential Impact of Zinc Supplementation on COVID-19 Pathogenesis,” Front. Immunol, vol. 11, Accessed: Nov. 30, 2022. [Online]. Available: https://www.frontiersin.org/articles/https://doi.org/10.3389/fimmu.2020.01712

  42. Jothimani D et al (2020) “COVID-19: Poor outcomes in patients with zinc deficiency,” Int. J. Infect. Dis. IJID Off. Publ. Int. Soc. Infect. Dis, vol. 100, pp. 343–349. https://doi.org/10.1016/j.ijid.2020.09.014

  43. Rosenkranz E et al (2016) Zinc supplementation induces regulatory T cells by inhibition of Sirt-1 deacetylase in mixed lymphocyte cultures. Mol Nutr Food Res 60(3):661–671. https://doi.org/10.1002/mnfr.201500524

    Article  CAS  PubMed  Google Scholar 

  44. te Velthuis AJW, van den Worm SHE, Sims AC, Baric RS, Snijder EJ, van Hemert MJ (Nov. 2010) Zn2 + inhibits coronavirus and Arterivirus RNA polymerase activity in Vitro and Zinc Ionophores Block the replication of these viruses in Cell Culture. PLOS Pathog 6(11):e1001176. https://doi.org/10.1371/journal.ppat.1001176

  45. Carlucci PM, Ahuja T, Petrilli C, Rajagopalan H, Jones S, Rahimian J (2020) “Zinc sulfate in combination with a zinc ionophore may improve outcomes in hospitalized COVID-19 patients,” J. Med. Microbiol, vol. 69, no. 10, pp. 1228–1234. https://doi.org/10.1099/jmm.0.001250

  46. Darma A et al (2020) “Zinc Supplementation Effect on the Bronchial Cilia Length, the Number of Cilia, and the Number of Intact Bronchial Cell in Zinc Deficiency Rats,” Indones. Biomed. J, vol. 12, no. 1, Art. no. 1. https://doi.org/10.18585/inabj.v12i1.998

  47. Ishida T (2019) “Review on The Role of Zn2 + Ions in Viral Pathogenesis and the Effect of Zn2 + Ions for Host Cell-Virus Growth Inhibition,” Am. J. Biomed. Sci. Res, vol. 2, no. 1, pp. 28–37, Mar.

  48. Baum MK, Campa A, Lai S, Lai H, Page JB (2003) Zinc status in human immunodeficiency virus type 1 infection and illicit drug use. Clin Infect Dis Off Publ Infect Dis Soc Am 37(2):S117–123. https://doi.org/10.1086/375875

    Article  CAS  Google Scholar 

  49. Poudel KC, Bertone-Johnson ER, Poudel-Tandukar K (May 2016) Serum zinc concentration and C-Reactive protein in individuals with human immunodeficiency virus infection: the positive living with HIV (POLH) study. Biol Trace Elem Res 171(1):63–70. https://doi.org/10.1007/s12011-015-0520-3

  50. Martinez SS et al (2017) “Low Plasma Zinc Is Associated with Higher Mitochondrial Oxidative Stress and Faster Liver Fibrosis Development in the Miami Adult Studies in HIV Cohort,” J. Nutr, vol. 147, no. 4, pp. 556–562. https://doi.org/10.3945/jn.116.243832

  51. Lodha R et al (1999) “Immunologic effect of zinc supplementation in HIV-infected children receiving highly active antiretroviral therapy: a randomized, double-blind, placebo-controlled trial,” J. Acquir. Immune Defic. Syndr vol. 66, no. 4, pp. 386–392, Aug. 2014. https://doi.org/10.1097/QAI.0000000000000191

  52. Asdamongkol N, Phanachet P, Sungkanuparph S (2013) Low plasma zinc levels and immunological responses to zinc supplementation in HIV-infected patients with immunological discordance after antiretroviral therapy. Jpn J Infect Dis 66(6):469–474. https://doi.org/10.7883/yoken.66.469

    Article  PubMed  Google Scholar 

  53. Dirajlal-Fargo S et al (1999) “Brief Report: Zinc Supplementation and Inflammation in Treated HIV,” J. Acquir. Immune Defic. Syndr vol. 82, no. 3, pp. 275–280, Nov. 2019. https://doi.org/10.1097/QAI.0000000000002129

  54. Hadadi A et al (2020) “The effect of selenium and zinc on CD4(+) count and opportunistic infections in HIV/AIDS patients: a randomized double blind trial,” Acta Clin. Belg, vol. 75, no. 3, pp. 170–176. https://doi.org/10.1080/17843286.2019.1590023

  55. Govind V et al (2021) “Antiviral properties of copper and its alloys to inactivate covid-19 virus: a review,” BioMetals, vol. 34, no. 6, pp. 1217–1235. https://doi.org/10.1007/s10534-021-00339-4

  56. Bonham M, O’Connor JM, Hannigan BM, Strain JJ (May 2002) The immune system as a physiological indicator of marginal copper status? Br J Nutr 87(5):393–403. https://doi.org/10.1079/BJN2002558

  57. Engin AB, Engin ED, Engin A (Oct. 2022) Can iron, zinc, copper and selenium status be a prognostic determinant in COVID-19 patients? Environ Toxicol Pharmacol 95:103937. https://doi.org/10.1016/j.etap.2022.103937

  58. Galmés S, Serra F, Palou A (Sep. 2020) Current state of evidence: influence of Nutritional and Nutrigenetic factors on immunity in the COVID-19 Pandemic Framework. Nutrients 12 9, Art. no. 9. https://doi.org/10.3390/nu12092738

  59. Terpos E et al (2020) “Hematological findings and complications of COVID-19,” Am. J. Hematol, vol. 95, no. 7, pp. 834–847. https://doi.org/10.1002/ajh.25829

  60. Bakhautdin B et al (2013) “Protective role of macrophage-derived ceruloplasmin in inflammatory bowel disease,” Gut, vol. 62, no. 2, pp. 209–219. https://doi.org/10.1136/gutjnl-2011-300694

  61. Gassen NC et al (2020) “Analysis of SARS-CoV-2-controlled autophagy reveals spermidine, MK-2206, and niclosamide as putative antiviral therapeutics.” bioRxiv, p. 04.15.997254, Apr. 15, 2020. https://doi.org/10.1101/2020.04.15.997254

  62. Chawla K et al (2022) “Autophagy in Virus Infection: A Race between Host Immune Response and Viral Antagonism,” Immuno, vol. 2, no. 1, Art. no. 1. https://doi.org/10.3390/immuno2010012

  63. Wang Q, Hou S (Apr. 2022) The emerging roles of ATG1/ATG13 kinase complex in plants. J Plant Physiol 271:153653. https://doi.org/10.1016/j.jplph.2022.153653

  64. Andreou A, Trantza S, Filippou D, Sipsas N, Tsiodras S, “COVID-19 (2020) : The Potential Role of Copper and N-acetylcysteine (NAC) in a Combination of Candidate Antiviral Treatments Against SARS-CoV-2,” In Vivo, vol. 34, no. 3 suppl, pp. 1567–1588. https://doi.org/10.21873/invivo.11946

  65. Sagripanti JL, Routson LB, Lytle CD (1993) “Virus inactivation by copper or iron ions alone and in the presence of peroxide,” Appl. Environ. Microbiol, vol. 59, no. 12, pp. 4374–4376. https://doi.org/10.1128/aem.59.12.4374-4376.1993

  66. Sagripanti J-L, Lightfoote MM (1996) “Cupric and Ferric Ions Inactivate HIV,” AIDS Res. Hum. Retroviruses, vol. 12, no. 4, pp. 333–336. https://doi.org/10.1089/aid.1996.12.333

  67. Karlström AR, Levine RL (1991) “Copper inhibits the protease from human immunodeficiency virus 1 by both cysteine-dependent and cysteine-independent mechanisms.,” Proc. Natl. Acad. Sci, vol. 88, no. 13, pp. 5552–5556. https://doi.org/10.1073/pnas.88.13.5552

  68. Styczynski AR et al (Aug. 2015) In vitro antiretroviral activity and in vivo toxicity of the potential topical microbicide copper phthalocyanine sulfate. Virol J 12(1):132. https://doi.org/10.1186/s12985-015-0358-5

  69. Borkow G, Lara HH, Covington CY, Nyamathi A, Gabbay J (2008) “Deactivation of human immunodeficiency virus type 1 in medium by copper oxide-containing filters,” Antimicrob. Agents Chemother, vol. 52, no. 2, pp. 518–525. https://doi.org/10.1128/AAC.00899-07

  70. Vzorov AN, Marzilli LG, Compans RW, Dixon DW (Jul. 2003) Prevention of HIV-1 infection by phthalocyanines. Antiviral Res 59(2):99–109. https://doi.org/10.1016/s0166-3542(03)00035-4

  71. Borkow G et al (2011) “Prevention of Human Immunodeficiency Virus Breastmilk Transmission with Copper Oxide: Proof-of-Concept Study,” Breastfeed. Med, vol. 6, no. 4, pp. 165–170. https://doi.org/10.1089/bfm.2010.0090

  72. Ito A, Tsuneki A, Yoshida Y, Ryoke K, Kaidoh T, Kageyama S (Mar. 2016) In Vitro Inhibition of Cytopathic Effect of Influenza Virus and Human Immunodeficiency Virus by Bamboo Leaf Extract Solution and Sodium Copper Chlorophyllin. Yonago Acta Med 59(1):61–65

  73. Mostafavi E, Iravani S, Varma RS (Oct. 2022) Nanosponges: an overlooked promising strategy to combat SARS-CoV-2. Drug Discov Today 27(10):103330. https://doi.org/10.1016/j.drudis.2022.07.015

  74. Zhang Q et al (Jul. 2020) Cellular Nanosponges inhibit SARS-CoV-2 infectivity. Nano Lett 20(7):5570–5574. https://doi.org/10.1021/acs.nanolett.0c02278

  75. Mousavi SM et al (Apr. 2020) Gold nanostars-diagnosis, bioimaging and biomedical applications. Drug Metab Rev 52(2):299–318. https://doi.org/10.1080/03602532.2020.1734021

  76. Tao W, Ziemer KS, Gill HS (Feb. 2014) Gold nanoparticle-M2e conjugate coformulated with CpG induces protective immunity against influenza a virus. Nanomed 9(2):237–251. https://doi.org/10.2217/nnm.13.58

  77. Kumar US, Afjei R, Ferrara K, Massoud TF, Paulmurugan R (2021) “Gold-Nanostar-Chitosan-Mediated Delivery of SARS-CoV-2 DNA Vaccine for Respiratory Mucosal Immunization: Development and Proof-of-Principle,” ACS Nano, vol. 15, no. 11, pp. 17582–17601. https://doi.org/10.1021/acsnano.1c05002

  78. Khan MA, Khan MJ (2018) Nano-gold displayed anti-inflammatory property via NF-kB pathways by suppressing COX-2 activity. Artif Cells Nanomedicine Biotechnol 46:1149–1158. no. sup110.1080/21691401.2018.1446968

    Article  CAS  Google Scholar 

  79. Lee C-H et al (Feb. 2014) Gold nanoparticles regulate the blimp1/pax5 pathway and enhance antibody secretion in B-cells. Nanotechnology 25(12):125103. https://doi.org/10.1088/0957-4484/25/12/125103

  80. Prego C et al (2010) “Chitosan-based nanoparticles for improving immunization against hepatitis B infection,” Vaccine, vol. 28, no. 14, pp. 2607–2614. https://doi.org/10.1016/j.vaccine.2010.01.011

Download references

Funding

The research receives no fund.

Author information

Authors and Affiliations

Authors

Contributions

Shatha A Albalawi, Raneem A Albalawi, Amaal A Albalawi, Raghad F. Alanazi, Raghad M. Almahlawi, Basma S. Alhwity, Bashayer D. Alatawi, Nehal Elsherbiny, Saleh F. Alqifari, Mohamed S. AbdelMaksoud wrote the main manuscript text.Shatha A Albalawi, Raneem A Albalawi, Amaal A Albalawi prepared figuresAll authors reviewed the manuscript.

Corresponding author

Correspondence to Nehal Elsherbiny.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albalawi, S.A., Albalawi, R.A., Albalawi, A.A. et al. The Possible Mechanisms of Cu and Zn in the Treatment and Prevention of HIV and COVID-19 Viral Infection. Biol Trace Elem Res 202, 1524–1538 (2024). https://doi.org/10.1007/s12011-023-03788-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-023-03788-9

Keywords

Navigation