Skip to main content
Log in

Comparative Analysis of Differentially Expressed Genes in Chondrocytes from Rats Exposed to Low Selenium and T-2 Toxin

  • Research
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The aim of this study was to construct rat models of environmental risk factors for Kashin-Beck disease (KBD) with low selenium and T-2 toxin levels and to screen the differentially expressed genes (DEGs) between the rat models exposed to environmental risk factors. The Se-deficient (SD) group and T-2 toxin exposure (T-2) group were constructed. Knee joint samples were stained with hematoxylin–eosin, and cartilage tissue damage was observed. Illumina high-throughput sequencing technology was used to detect the gene expression profiles of the rat models in each group. Gene Ontology (GO) functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway enrichment analysis were performed and five differential gene expression results were verified by quantitative real-time polymerase chain reaction (qRT‒PCR). A total of 124 DEGs were identified from the SD group, including 56 upregulated genes and 68 downregulated genes. A total of 135 DEGs were identified in the T-2 group, including 68 upregulated genes and 67 downregulated genes. The DEGs were significantly enriched in 4 KEGG pathways in the SD group and 9 KEGG pathways in the T-2 group. The expression levels of Dbp, Pc, Selenow, Rpl30, and Mt2A were consistent with the results of transcriptome sequencing by qRT‒PCR. The results of this study confirmed that there were some differences in DEGs between the SD group and the T-2 group and provided new evidence for further exploration of the etiology and pathogenesis of KBD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data generated or used during the study are available from the corresponding author and first author upon reasonable request.

References

  1. Wang X, Ning YJ, Zhang P, Poulet B, Huang RT, Gong Y, Hu MH, Li C, Zhou R, Lammi MJ, Guo X (2021) Comparison of the major cell populations among osteoarthritis, Kashin-Beck disease and healthy chondrocytes by single-cell RNA-seq analysis. Cell Death Dis 12:551

  2. Ning YJ, Wang X, Zhang P, Anatoly SV, Prakash NT, Li C, Zhou R, Lammi M, Zhang F, Guo X (2018) Imbalance of dietary nutrients and the associated differentially expressed genes and pathways may play important roles in juvenile Kashin-Beck disease. J Trace Elem Med Biol 50:441–460

    Article  CAS  PubMed  Google Scholar 

  3. Wang X, Wang S, He S, Zhang F, Tan W, Lei Y, Yu H, Li Z, Ning Y, Xiang Y, Guo X (2013) Comparing gene expression profiles of Kashin-Beck and Keshan diseases occurring within the same endemic areas of China. Sci China Life Sci 56:797–803

    Article  CAS  PubMed  Google Scholar 

  4. Guo X, Ma WJ, Zhang F, Ren FL, Qu CJ, Lammi MJ (2014) Recent advances in the research of an endemic osteochondropathy in China: Kashin-Beck disease. Osteoarthr Cartil 22:1774–1783

    Article  CAS  Google Scholar 

  5. Lei RH, Jiang N, Zhang Q, Hu SK, Dennis BS, He SS, Guo X (2016) Prevalence of selenium, T-2 toxin, and deoxynivalenol in Kashin-Beck disease areas in Qinghai Province. Northwest China Biol Trace Elem Res 171:34–40

    Article  CAS  PubMed  Google Scholar 

  6. Kang D, Lee J, Wu C, Guo X, Lee BJ, Chun JS, Kim JH (2020) The role of selenium metabolism and selenoproteins in cartilage homeostasis and arthropathies. Exp Mol Med 52:1198–1208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yang L, Zhao GH, Yu FF, Zhang RQ, Guo X (2016) Selenium and iodine levels in subjects with Kashin-Beck disease: a meta-analysis. Biol Trace Elem Res 170:43–54

    Article  CAS  PubMed  Google Scholar 

  8. Guo Y, Li H, Yang L, Li Y, Wei B, Wang W, Gong H, Guo M, Nima C, Zhao S, Wang J (2017) Trace element levels in scalp hair of school children in Shigatse, Tibet, an endemic area for Kaschin-Beck disease (KBD). Biol Trace Elem Res 180:15–22

    Article  CAS  PubMed  Google Scholar 

  9. Wang L, Yin J, Yang B, Qu C, Lei J, Han J, Guo X (2020) Serious selenium Ddficiency in the serum of patients with Kashin-Beck disease and the effect of nano-selenium on their chondrocytes. Biol Trace Elem Res 194:96–104

    Article  CAS  PubMed  Google Scholar 

  10. Zou K, Liu G, Wu T, Du L (2009) Selenium for preventing Kashin-Beck osteoarthropathy in children: a meta-analysis. Osteoarthr Cartil 17:144–151

    Article  CAS  Google Scholar 

  11. Li YS, Wang ZH, Beier RC, Shen JZ, De Smet D, De Saeger S, Zhang SX (2011) T-2 Toxin, a trichothecene mycotoxin: review of toxicity, metabolism, and analytical methods. J Agric Food Chem 59:3441–3453

    Article  CAS  PubMed  Google Scholar 

  12. Chen JH, Cao JL, Chu YL, Wang ZL, Yang ZT, Wang HL (2008) T-2 toxin-induced apoptosis involving Fas, p53, Bcl-xL, Bcl-2, Bax and caspase-3 signaling pathways in human chondrocytes. J Zhejiang Univ-SCI B 9:455–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu JT, Wang LL, Guo X, Pang QJ, Wu SX, Wu CY, Xu P, Bai YD (2014) The role of mitochondria in T-2 toxin-induced human chondrocytes apoptosis. PLoS One 9:9

    Google Scholar 

  14. Yang HJ, Zhang Y, Wang ZL, Xue SH, Li SY, Zhou XR, Zhang M, Fang Q, Wang WJ, Chen C, Deng XH, Chen JH (2017) Increased chondrocyte apoptosis in Kashin-Beck disease and rats induced by T-2 toxin and selenium deficiency. Biomed Environ Sci 30:351–362

    CAS  PubMed  Google Scholar 

  15. Yao YF, Pei FX, Kang PD (2011) Selenium, iodine, and the relation with Kashin-Beck disease. Nutrition 27:1095–1100

    Article  CAS  PubMed  Google Scholar 

  16. Yu FF, Zuo J, Sun L, Yu SY, Lei XL, Zhu JH, Zhou GY, Guo X, Ba Y (2022) Animal models of Kashin-Beck disease exposed to environmental risk factors: methods and comparisons. Ecotox Environ Safe 234:8

    Article  Google Scholar 

  17. Tang ZR, Wang Z, Qing FZ, Ni YL, Fan YJ, Tan YF, Zhang XD (2015) Bone morphogenetic protein Smads signaling in mesenchymal stem cells affected by osteoinductive calcium phosphate ceramics. J Biomed Mater Res Part A 103:1001–1010

    Article  Google Scholar 

  18. Babitt JL, Zhang Y, Samad TA, Xia Y, Tang J, Campagna JA, Schneyer AL, Woolf CJ, Lin HY (2005) Repulsive guidance molecule (RGMa), a DRAGON homologue, is a bone morphogenetic protein co-receptor. J Biol Chem 280:29820–29827

    Article  CAS  PubMed  Google Scholar 

  19. Lavery K, Swain P, Falb D, Alaoui-Ismaili MH (2008) BMP-2/4 and BMP-6/7 differentially utilize cell surface receptors to induce osteoblastic differentiation of human bone marrow-derived mesenchymal stem cells. J Biol Chem 283:20948–20958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhou N, Li Q, Lin X, Hu N, Liao JY, Lin LB, Zhao C, Hu ZM, Liang X, Xu W, Chen H, Huang W (2016) BMP2 induces chondrogenic differentiation, osteogenic differentiation and endochondral ossification in stem cells. Cell Tissue Res 366:101–111

    Article  CAS  PubMed  Google Scholar 

  21. Merida I, Torres-Ayuso P, Avila-Flores A, Arranz-Nicolas J, Andrada E, Tello-Lafoz M, Liebana R, Arcos R (2017) Diacylglycerol kinases in cancer. Adv Biol Reg 63:22–31

    Article  CAS  Google Scholar 

  22. Iwazaki K, Tanaka T, Hozumi Y, Okada M, Tsuchiya R, Iseki K, Topham MK, Kawamae K, Takagi M, Goto K (2017) DGK downregulation enhances osteoclast differentiation and bone resorption activity under inflammatory conditions. J Cell Physiol 232:617–624

    Article  CAS  PubMed  Google Scholar 

  23. Holmes RS, Wright MW, Laulederkind SJF, Cox LA, Hosokawa M, Imai T, Ishibashi S, Lehner R, Miyazaki M, Perkins EJ, Potter PM, Redinbo MR, Robert J, Satoh T, Yamashita T, Yan BF, Yokoi T, Zechner R, Maltais LJ (2010) Recommended nomenclature for five mammalian carboxylesterase gene families: human, mouse, and rat genes and proteins. Mamm Genome 21:427–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mukherjee S, Park JP, Yun JW (2022) Carboxylesterase3 (Ces3) interacts with bone morphogenetic protein 11 and promotes differentiation of osteoblasts via Smad1/5/9 pathway. Biotechnol Bioprocess Eng 27:1–16

    Article  CAS  Google Scholar 

  25. Gistelinck C, Weis M, Rai J, Schwarze U, Niyazov D, Song KM, Byers PH, Eyre DR (2021) Abnormal bone collagen cross-linking in osteogenesis imperfecta/Bruck syndrome caused by compound heterozygous PLOD2 mutations. JBMR Plus 5:15

    Article  Google Scholar 

  26. Duntas LH, Benvenga S (2015) Selenium: an element for life. Endocrine 48:756–775

    Article  CAS  PubMed  Google Scholar 

  27. Gong Y, Wu Y, Liu Y, Chen S, Zhang F, Chen F, Wang C, Li S, Hu M, Huang R, Xu K, Wang X, Yang L, Ning Y, Li C, Zhou R, Guo X (2023) Detection of selenoprotein transcriptome in chondrocytes of patients with Kashin-Beck disease. Front Cell Dev Biol 11:1083904

    Article  PubMed  PubMed Central  Google Scholar 

  28. Drevet JR (2006) The antioxidant glutathione peroxidase family and spermatozoa: a complex story. Mol Cell Endocrinol 250:70–79

    Article  CAS  PubMed  Google Scholar 

  29. Cheng AWM, Bolognesi M, Kraus VB (2012) DIO2 modifies inflammatory responses in chondrocytes. Osteoarthr Cartil 20:440–445

    Article  CAS  Google Scholar 

  30. Kim H, Lee K, Kim JM, Kim MY, Kim JR, Lee HW, Chung YW, Shin HI, Kim T, Park ES, Rho J, Lee SH, Kim N, Lee SY, Choi Y, Jeong D (2021) Selenoprotein W ensures physiological bone remodeling by preventing hyperactivity of osteoclasts. Nat Commun 12:13

    Google Scholar 

  31. Martin A, Kentrup D (2021) The role of DMP1 in CKD-MBD. Curr Osteoporos Rep 19:500–509

    Article  PubMed  Google Scholar 

  32. Lu B, Jiao Y, Wang Y, Dong J, Wei M, Cui B, Sun Y, Wang L, Zhang B, Chen Z, Zhao Y (2017) A FKBP5 mutation is associated with Paget’s disease of bone and enhances osteoclastogenesis. Exp Mol Med 49:1–13

    Article  Google Scholar 

  33. Zalewska M, Trefon J, Milnerowicz H (2014) The role of metallothionein interactions with other proteins. Proteomics 14:1343–1356

    Article  CAS  PubMed  Google Scholar 

  34. Tanaka K, Xue YB, Nguyen-Yamamoto L, Morris JA, Kanazawa I, Sugimoto T, Wing SS, Richards JB, Goltzman D (2018) FAM210A is a novel determinant of bone and muscle structure and strength. Proc Natl Acad Sci USA 115:E3759–E3768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang B, Wang H, Li YC, Song L (2022) Lipid metabolism within the bone micro-environment is closely associated with bone metabolism in physiological and pathophysiological stages. Lipids Health Dis 21:14

    Article  CAS  Google Scholar 

  36. Tian L, Yu XJ (2015) Lipid metabolism disorders and bone dysfunction-interrelated and mutually regulated (Review). Mol Med Rep 12:783–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chen G, Tang Q, Yu S, Xie Y, Sun J, Li S, Chen L (2020) The biological function of BMAL1 in skeleton development and disorders. Life Sci 253:117636

    Article  CAS  PubMed  Google Scholar 

  38. Holt RJ, Young RM, Crespo B, Ceroni F, Curry CJ, Bellacchio E, Bax DA, Ciolfi A, Simon M, Fagerberg CR, van Binsbergen E, De Luca A, Memo L, Dobyns WB, Mohammed AA, Clokie SJH, Zazo Seco C, Jiang YH, Sørensen KP, Andersen H, Sullivan J, Powis Z, Chassevent A, Smith-Hicks C, Petrovski S, Antoniadi T, Shashi V, Gelb BD, Wilson SW, Gerrelli D, Tartaglia M, Chassaing N, Calvas P, Ragge NK (2019) De novo missense variants in FBXW11 cause diverse developmental phenotypes including brain, eye, and digit anomalies. Am J Hum Genet 105:640–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gavala ML, Hill LM, Lenertz LY, Karta MR, Bertics PJ (2010) Activation of the transcription factor FosB/activating protein-1 (AP-1) is a prominent downstream signal of the extracellular nucleotide receptor P2RX7 in monocytic and osteoblastic cells. J Biol Chem 285:34288–34298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Raghu H, Lepus CM, Wang Q, Wong HH, Lingampalli N, Oliviero F, Punzi L, Giori NJ, Goodman SB, Chu CR, Sokolove JB, Robinson WH (2017) CCL2/CCR2, but not CCL5/CCR5, mediates monocyte recruitment, inflammation and cartilage destruction in osteoarthritis. Ann Rheum Dis 76:914–922

    Article  CAS  PubMed  Google Scholar 

  41. Yang Q, Zhao D, Zhang C, Sreenivasulu N, Sun SS, Liu Q (2022) Lysine biofortification of crops to promote sustained human health in the 21st century. J Exp Bot 73:1258–1267

    Article  CAS  PubMed  Google Scholar 

  42. Aggarwal R, Bains K (2022) Protein, lysine and vitamin D: critical role in muscle and bone health. Crit Rev Food Sci Nutr 62:2548–2559

    Article  CAS  PubMed  Google Scholar 

  43. Chang Y, Wang X, Sun Z, Jin Z, Chen M, Wang X, Lammi MJ, Guo X (2017) Inflammatory cytokine of IL-1β is involved in T-2 toxin-triggered chondrocyte injury and metabolism imbalance by the activation of Wnt/β-catenin signaling. Mol Immunol 91:195–201

    Article  CAS  PubMed  Google Scholar 

  44. Zhou X, Wang Z, Chen J, Wang W, Song D, Li S, Yang H, Xue S, Chen C (2014) Increased levels of IL-6, IL-1β, and TNF-α in Kashin-Beck disease and rats induced by T-2 toxin and selenium deficiency. Rheumatol Int 34:995–1004

    Article  CAS  PubMed  Google Scholar 

  45. Liu YS, Peng H, Meng Z, Wei MZ (2015) Correlation of IL-17 level in synovia and severity of knee osteoarthritis. Med Sci Monitor 21:1732–1736

    Article  Google Scholar 

  46. Amarasekara DS, Yun H, Kim S, Lee N, Kim H, Rho J (2018) Regulation of osteoclast differentiation by cytokine networks. Immune Network 18:18

    Article  Google Scholar 

  47. Lee EY, Lee ZH, Song YW (2009) CXCL10 and autoimmune diseases. Autoimmun Rev 8:379–383

    Article  CAS  PubMed  Google Scholar 

  48. Gao JF, Zhang GL, Xu K, Ma D, Ren LM, Fan JJ, Hou JW, Han J, Zhang LY (2020) Bone marrow mesenchymal stem cells improve bone erosion in collagen-induced arthritis by inhibiting osteoclasia-related factors and differentiating into chondrocytes. Stem Cell Res Ther 11:14

    Article  Google Scholar 

Download references

Funding

This study was financially supported by the National Natural Science Foundation of China (82273752 and 81620108026), Natural Science Basic Research Plan in Shaanxi Province of China (2023-JC-YB-704), the China Postdoctoral Science Foundation (2022M712526, 2021M692543 and 2022M722523), the Shaanxi Postdoctoral Foundation (2018BSHYDZZ47 and 2018BSHEDZZ96) and the Key R&D Program of Shaanxi Province (NO. 2022SF-361). We thank laboratory technician Zengtie Zhang for expert experimental advice.

Author information

Authors and Affiliations

Authors

Contributions

WYF, YJN, XW, and XG designed the study. YG, MHH, RTH, YLL, FHC, FYZ, SJC, SJL, LY, and CWW performed the analysis and interpretation of the data. YJN, XW, and XG analyzed the results and drafted the manuscript. All authors critically reviewed and amended the manuscript, and all authors read and approved the final manuscript. All authors read and approved the manuscript.

Corresponding authors

Correspondence to Xi Wang or Yujie Ning.

Ethics declarations

Ethics Approval

This study was approved by the Ethics Committee of Xi’an Jiaotong University.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 10 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Gong, Y., Liu, Y. et al. Comparative Analysis of Differentially Expressed Genes in Chondrocytes from Rats Exposed to Low Selenium and T-2 Toxin. Biol Trace Elem Res 202, 1020–1030 (2024). https://doi.org/10.1007/s12011-023-03725-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-023-03725-w

Keywords

Navigation