Skip to main content
Log in

ROS and ERK Pathway Mechanistic Approach on Hepatic Insulin Resistance After Chronic Oral Exposure to Cadmium NOAEL Dose

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Cadmium is a critical toxic agent in occupational and non-occupational settings and acute and chronic environmental exposure situations that have recently been associated with metabolic disease development. Until now, the no observed adverse effect level (NOAEL) of cadmium has not been studied regarding insulin resistance development. Therefore, we aimed to monitor whether chronic oral exposure to cadmium NOAEL dose induces insulin resistance in Wistar rats and investigate if oxidative stress and/or inflammation are related. Male Wistar rats were separated into control (standard normocalorie diet + water free of cadmium) and cadmium groups (standard normocalorie diet + drinking water with 15 ppm CdCl2). At 15, 30, and 60 days, oral glucose tolerance, insulin response, and insulin resistance were analyzed using mathematical models. In the liver glycogen, triglyceride, pro- and anti-inflammatory cytokines, cadmium, zinc, metallothioneins, and redox balance were quantified. Immunoreactivity analysis of proteins involved in metabolic and mitogenic insulin signaling was performed. The results showed that a cadmium NOAEL dose after 15 days of exposure causes ROS and mitogenic arm of insulin signaling to increase while hepatic glycogen diminishes. At 30 days, Cd accumulation accentuated ROS production, hepatic triglyceride overaccumulation, and mitogenic signals that develop insulin resistance. Finally, inflammation and lipid peroxidation appear after 60 days of Cd exposure, while lipids and carbohydrate homeostasis deteriorate. In conclusion, environmental exposure to cadmium NAOEL dose causes hepatic Cd accumulation and ROS overproduction that chronically declines the antioxidant defense, deteriorates metabolic homeostasis associated with the mitogenic pathway of insulin signaling, and induces insulin resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. ATSDR (2012) Toxicological profile for cadmium. Agency Toxic Subst Dis Regist Public Heal Serv US Dep Heal Hum Serv 1–487

  2. Satarug S (2018) Dietary cadmium intake and its effects on kidneys. Toxics 6:15. https://doi.org/10.3390/TOXICS6010015

    Article  PubMed  PubMed Central  Google Scholar 

  3. Smolders E, Mertens J (2013) Cadmium. 283–311. https://doi.org/10.1007/978-94-007-4470-7_10

  4. Treviño S, Waalkes MP, Flores Hernández JA et al (2015) Chronic cadmium exposure in rats produces pancreatic impairment and insulin resistance in multiple peripheral tissues. Arch Biochem Biophys 583:27–35. https://doi.org/10.1016/j.abb.2015.07.010

    Article  CAS  PubMed  Google Scholar 

  5. Sarmiento-Ortega VE, Treviño S, Flores-Hernández JÁ et al (2017) Changes on serum and hepatic lipidome after a chronic cadmium exposure in Wistar rats. Arch Biochem Biophys 635:52–59. https://doi.org/10.1016/j.abb.2017.10.003

    Article  CAS  PubMed  Google Scholar 

  6. Sarmiento-Ortega VE, Moroni-González D, Díaz A et al (2021) Oral subacute exposure to cadmium LOAEL dose induces insulin resistance and impairment of the hormonal and metabolic liver-adipose axis in Wistar rats. Biol Trace Elem Res 200:4370. https://doi.org/10.1007/S12011-021-03027-Z

    Article  PubMed  Google Scholar 

  7. Sarmiento-Ortega V, Brambila E, Flores-Hernández J et al (2018) The NOAEL metformin dose is ineffective against metabolic disruption induced by chronic cadmium exposure in Wistar rats. Toxics 6:55. https://doi.org/10.3390/toxics6030055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Santamaria-Juarez C, Atonal-Flores F, Diaz A et al (2020) Aortic dysfunction by chronic cadmium exposure is linked to multiple metabolic risk factors that converge in anion superoxide production. Arch Physiol Biochem 128:748. https://doi.org/10.1080/13813455.2020.1726403

    Article  CAS  PubMed  Google Scholar 

  9. Barregard L, Bergström G, Fagerberg B (2013) Cadmium exposure in relation to insulin production, insulin sensitivity and type 2 diabetes: a cross-sectional and prospective study in women. Environ Res 121:104–109. https://doi.org/10.1016/J.ENVRES.2012.11.005

    Article  CAS  PubMed  Google Scholar 

  10. Borné Y, Fagerberg B, Persson M et al (2014) Cadmium exposure and incidence of diabetes mellitus - results from the Malmö diet and Cancer study. PLoS ONE 9:e112277. https://doi.org/10.1371/JOURNAL.PONE.0112277

    Article  PubMed  PubMed Central  Google Scholar 

  11. Swaddiwudhipong W, Limpatanachote P, Mahasakpan P et al (2012) Progress in cadmium-related health effects in persons with high environmental exposure in northwestern Thailand: a five-year follow-up. Environ Res 112:194–198. https://doi.org/10.1016/j.envres.2011.10.004

    Article  CAS  PubMed  Google Scholar 

  12. Zhang WL, Du Y, Zhai MM, Shang Q (2014) Cadmium exposure and its health effects: a 19-year follow-up study of a polluted area in China. Sci Total Environ 470–471:224–228. https://doi.org/10.1016/J.SCITOTENV.2013.09.070

    Article  PubMed  Google Scholar 

  13. Madrigal JM, Ricardo AC, Persky V, Turyk M (2019) Associations between blood cadmium concentration and kidney function in the U.S. population: impact of sex, diabetes and hypertension. Environ Res 169:180. https://doi.org/10.1016/J.ENVRES.2018.11.009

    Article  CAS  PubMed  Google Scholar 

  14. Wu M, Song J, Zhu C et al (2017) Association between cadmium exposure and diabetes mellitus risk: a Prisma-compliant systematic review and meta-analysis. Oncotarget 8:113129. https://doi.org/10.18632/ONCOTARGET.21991

    Article  PubMed  PubMed Central  Google Scholar 

  15. Filippini T, Wise LA, Vinceti M (2022) Cadmium exposure and risk of diabetes and prediabetes: a systematic review and dose-response meta-analysis. Environ Int 158:106920. https://doi.org/10.1016/J.ENVINT.2021.106920

    Article  CAS  PubMed  Google Scholar 

  16. Tinkov AA, Filippini T, Ajsuvakova OP et al (2017) The role of cadmium in obesity and diabetes. Sci Total Environ 601–602:741–755. https://doi.org/10.1016/J.SCITOTENV.2017.05.224

    Article  PubMed  Google Scholar 

  17. Wallia A, Allen NB, Badon S, El Muayed M (2014) Association between urinary cadmium levels and prediabetes in the NHANES 2005–2010 population. Int J Hyg Environ Health 217:854–860. https://doi.org/10.1016/J.IJHEH.2014.06.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Menke A, Guallar E, Cowie CC (2016) Metals in urine and diabetes in U.S. Adults Diabetes 65:164–171. https://doi.org/10.2337/DB15-0316

    Article  CAS  PubMed  Google Scholar 

  19. DeFronzo RA (2004) Pathogenesis of type 2 diabetes mellitus. Med Clin North Am 88:787–835. https://doi.org/10.1016/j.mcna.2004.04.013

    Article  CAS  PubMed  Google Scholar 

  20. Paschen M, Moede T, Valladolid-Acebes I et al (2019) Diet-induced β-cell insulin resistance results in reversible loss of functional β-cell mass. FASEB J 33:204–218. https://doi.org/10.1096/fj.201800826R

    Article  CAS  PubMed  Google Scholar 

  21. Shanik J, Xu Y, Skrha J et al (2008) Insulin resistance and hyperinsulinemia: is hyperinsulinemia the cart or the horse? Diabetes Care 31(Suppl 2):S262. https://doi.org/10.2337/DC08-S264

    Article  CAS  PubMed  Google Scholar 

  22. V S, C EM, L B, et al (2009) NADPH oxidase and ERK1/2 are involved in cadmium induced-STAT3 activation in HepG2 cells. Toxicol Lett 187:180–186. https://doi.org/10.1016/J.TOXLET.2009.02.021

    Article  Google Scholar 

  23. Souza V, Flores K, Ortiz L et al (2012) Liver and cadmium toxicity. J Drug Metab Toxicol S 5:5. https://doi.org/10.4172/2157-7609.S5-001

    Article  Google Scholar 

  24. Ali I, Damdimopoulou P, Stenius U, Halldin K (2015) Cadmium at nanomolar concentrations activates Raf-MEK-ERK1/2 MAPKs signaling via EGFR in human cancer cell lines. Chem Biol Interact 231:44–52. https://doi.org/10.1016/j.cbi.2015.02.014

    Article  CAS  PubMed  Google Scholar 

  25. Martelli A, Rousselet E, Dycke C et al (2006) Cadmium toxicity in animal cells by interference with essential metals. Biochimie 88:1807–1814. https://doi.org/10.1016/J.BIOCHI.2006.05.013

    Article  CAS  PubMed  Google Scholar 

  26. Nurchi VM, Aaseth J, Nordberg M, Nordberg GF (2022) Metallothionein and cadmium toxicology & mdash; historical review and commentary. Biomol 12:360. https://doi.org/10.3390/BIOM12030360

    Article  Google Scholar 

  27. Ren L, Qi K, Zhang L et al (2019) Glutathione might attenuate cadmium-induced liver oxidative stress and hepatic stellate cell activation. Biol Trace Elem Res 191:443–452. https://doi.org/10.1007/S12011-019-1641-X/FIGURES/7

    Article  CAS  PubMed  Google Scholar 

  28. Renugadevi J, Prabu SM (2010) Cadmium-induced hepatotoxicity in rats and the protective effect of naringenin. Exp Toxicol Pathol 62:171–181. https://doi.org/10.1016/J.ETP.2009.03.010

    Article  CAS  PubMed  Google Scholar 

  29. Prabu SM, Shagirtha K, Renugadevi J (2010) Amelioration of cadmium-induced oxidative stress, impairment in lipids and plasma lipoproteins by the combined treatment with quercetin and α-tocopherol in rats. J Food Sci 75:T132. https://doi.org/10.1111/j.1750-3841.2010.01757.x

    Article  CAS  PubMed  Google Scholar 

  30. Haouem S, El Hani A (2013) Effect of cadmium on lipid peroxidation and on some antioxidants in the liver, kidneys and testes of rats given diet containing cadmium-polluted radish bulbs. J Toxicol Pathol 26:359. https://doi.org/10.1293/TOX.2013-0025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sánchez-Solís CN, Hernández-Fragoso H, Aburto-Luna V et al (2021) Kidney adaptations prevent loss of trace elements in Wistar rats with early metabolic syndrome. Biol Trace Elem Res 199:1941–1953. https://doi.org/10.1007/S12011-020-02317-2

    Article  PubMed  Google Scholar 

  32. Bennett LW, Keirs RW, Peebles ED, Gerard PD (2007) Methodologies of tissue preservation and analysis of the glycogen content of the broiler chick liver. Poult Sci 86:2653–2665. https://doi.org/10.3382/ps.2007-00303

    Article  CAS  PubMed  Google Scholar 

  33. Sedmak JJ, Grossberg SE (1977) A rapid, sensitive, and versatile assay for protein using Coomassie brilliant blue G250. Anal Biochem 79:544–552. https://doi.org/10.1016/0003-2697(77)90428-6

    Article  CAS  PubMed  Google Scholar 

  34. Díaz A, Treviño S, Guevara J et al (2016) Energy drink administration in combination with alcohol causes an inflammatory response and oxidative stress in the hippocampus and temporal cortex of rats. Oxid Med Cell Longev 2016:8725354. https://doi.org/10.1155/2016/8725354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Erdelmeier I, Gérard-Monnier D, Régnard K et al (1998) Reactions of 1-methyl-2-phenylindole with malondialdehyde and 4-hydroxyalkenals. Analytical applications to a colorimetric assay of lipid peroxidation. Chem Res Toxicol 11:1176–1183. https://doi.org/10.1021/TX9701790

    Article  CAS  PubMed  Google Scholar 

  36. Tsikas D (2007) Analysis of nitrite and nitrate in biological fluids by assays based on the Griess reaction: appraisal of the Griess reaction in the L-arginine/nitric oxide area of research. J Chromatogr B Analyt Technol Biomed Life Sci 851:51–70. https://doi.org/10.1016/J.JCHROMB.2006.07.054

    Article  CAS  PubMed  Google Scholar 

  37. Eaton DL, George Cherian M (1991) Determination of metallothionein in tissues by cadmium-hemoglobin affinity assay. Methods Enzymol 205:83–88. https://doi.org/10.1016/0076-6879(91)05089-E

    Article  CAS  PubMed  Google Scholar 

  38. Rahman I, Kode A, Biswas SK (2006) Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method. Nat Protoc 1:3159–3165. https://doi.org/10.1038/NPROT.2006.378

    Article  CAS  PubMed  Google Scholar 

  39. Flohé L, Günzler WA (1984) Assays of glutathione peroxidase. Methods Enzymol 105:114–120. https://doi.org/10.1016/S0076-6879(84)05015-1

    Article  PubMed  Google Scholar 

  40. Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    Article  CAS  PubMed  Google Scholar 

  41. Smith IK, Vierheller TL, Thorne CA (1988) Assay of glutathione reductase in crude tissue homogenates using 5,5’-dithiobis(2-nitrobenzoic acid). Anal Biochem 175:408–413. https://doi.org/10.1016/0003-2697(88)90564-7

    Article  CAS  PubMed  Google Scholar 

  42. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126. https://doi.org/10.1016/S0076-6879(84)05016-3

    Article  CAS  PubMed  Google Scholar 

  43. Treviño S, González-Vergara E (2019) Metformin-decavanadate treatment ameliorates hyperglycemia and redox balance of the liver and muscle in a rat model of alloxan-induced diabetes. New J Chem 43:17850–17862. https://doi.org/10.1039/c9nj02460c

    Article  CAS  Google Scholar 

  44. Larregle EV, Varas SM, Oliveros LB et al (2008) Lipid metabolism in liver of rat exposed to cadmium. Food Chem Toxicol 46:1786–1792. https://doi.org/10.1016/j.fct.2008.01.018

    Article  CAS  PubMed  Google Scholar 

  45. Yazihan N, Kocak MK, Akcil E et al (2011) Role of midkine in cadmium-induced liver, heart and kidney damage. Hum Exp Toxicol 30:391–397. https://doi.org/10.1177/0960327110372402

    Article  CAS  PubMed  Google Scholar 

  46. Koyu A, Gokcimen A, Ozguner F et al (2006) Evaluation of the effects of cadmium on rat liver. Mol Cell Biochem 284:81–85. https://doi.org/10.1007/S11010-005-9017-2

    Article  CAS  PubMed  Google Scholar 

  47. Anna FA, Peacock, Pecoraro VL (2013) Natural and artificial proteins containing cadmium. In: Sigel A, Sigel H, Sigel RK (eds) Cadmium: From Toxicity to Essentiality 303–335

  48. Thévenod F, Lee WK (2013) Cadmium and cellular signaling cascades: interactions between cell death and survival pathways. Arch Toxicol 87:1743–1786. https://doi.org/10.1007/S00204-013-1110-9

    Article  PubMed  Google Scholar 

  49. Wk L, F T, (2020) Cell organelles as targets of mammalian cadmium toxicity. Arch Toxicol 94:1017–1049. https://doi.org/10.1007/S00204-020-02692-8

    Article  Google Scholar 

  50. Genchi G, Sinicropi MS, Lauria G et al (2020) The Effects of cadmium toxicity. Int J Environ Res Public Health 17:3782. https://doi.org/10.3390/IJERPH17113782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Thévenod F (2009) Cadmium and cellular signaling cascades: to be or not to be? Toxicol Appl Pharmacol 238:221–239. https://doi.org/10.1016/J.TAAP.2009.01.013

    Article  PubMed  Google Scholar 

  52. Günther V, Lindert U, Schaffner W (2012) The taste of heavy metals: gene regulation by MTF-1. Biochim Biophys Acta - Mol Cell Res 1823:1416–1425. https://doi.org/10.1016/J.BBAMCR.2012.01.005

    Article  Google Scholar 

  53. Lee WK (2020) Thévenod F (2020) Cell organelles as targets of mammalian cadmium toxicity. Arch Toxicol 944(94):1017–1049. https://doi.org/10.1007/S00204-020-02692-8

    Article  Google Scholar 

  54. Nordberg M, Nordberg GF (2022) Metallothionein and cadmium toxicology-historical review and commentary. Biomolecules 12:360. https://doi.org/10.3390/BIOM12030360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Liu J, Liu Y, Habeebu SS, Klaassen CD (1998) Susceptibility of MT-null mice to chronic CdCl2-induced nephrotoxicity indicates that renal injury is not mediated by the CdMT complex. Toxicol Sci 46:197–203. https://doi.org/10.1006/TOXS.1998.2541

    Article  CAS  PubMed  Google Scholar 

  56. Klaassen CD, Liu J (1998) Metallothionein transgenic and knock-out mouse models in the study of cadmium toxicity. J Toxicol Sci 23(Suppl 2):97–102. https://doi.org/10.2131/JTS.23.SUPPLEMENTII_97

    Article  CAS  PubMed  Google Scholar 

  57. Liu Y, Liu J, Klaassen CD (2001) Metallothionein-null and wild-type mice show similar cadmium absorption and tissue distribution following oral cadmium administration. Toxicol Appl Pharmacol 175:253–259. https://doi.org/10.1006/TAAP.2001.9244

    Article  CAS  PubMed  Google Scholar 

  58. He X, Chen MG, Ma Q (2008) Activation of Nrf2 in defense against cadmium-induced oxidative stress. Chem Res Toxicol 21:1375–1383. https://doi.org/10.1021/TX800019A

    Article  CAS  PubMed  Google Scholar 

  59. Buha A, Baralić K, Djukic D et al (2021) The Role of toxic metals and metalloids in Nrf2 signaling. Antioxidants 10:630. https://doi.org/10.3390/ANTIOX10050630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wang Y, Fang J, Leonard SS, Krishna Rao KM (2004) Cadmium inhibits the electron transfer chain and induces reactive oxygen species. Free Radic Biol Med 36:1434–1443. https://doi.org/10.1016/j.freeradbiomed.2004.03.010

    Article  CAS  PubMed  Google Scholar 

  61. Ah P, Ai E, P C, et al (2006) In vivo protective effect of melatonin on cadmium-induced changes in redox balance and gene expression in rat hypothalamus and anterior pituitary. J Pineal Res 41:238–246. https://doi.org/10.1111/J.1600-079X.2006.00360.X

    Article  Google Scholar 

  62. El-kott AF, Alshehri AS, Khalifa HS et al (2020) Cadmium chloride induces memory deficits and hippocampal damage by activating the JNK/p66Shc/NADPH oxidase axis. Int J Toxicol 39:477–490. https://doi.org/10.1177/1091581820930651

    Article  CAS  PubMed  Google Scholar 

  63. Mohammadi-Bardbori A, Rannug A (2014) Arsenic, cadmium, mercury and nickel stimulate cell growth via NADPH oxidase activation. Chem Biol Interact 224:183–188. https://doi.org/10.1016/J.CBI.2014.10.034

    Article  CAS  PubMed  Google Scholar 

  64. Dk G, Lb P, MC R-P, et al (2017) NADPH oxidases differentially regulate ROS metabolism and nutrient uptake under cadmium toxicity. Plant Cell Environ 40:509–526. https://doi.org/10.1111/PCE.12711

    Article  Google Scholar 

  65. Jaeschke H, Gores GJ, Cederbaum AI et al (2002) Mechanisms of Hepatotoxicity. Toxicol Sci 65:166–176. https://doi.org/10.1093/TOXSCI/65.2.166

    Article  CAS  PubMed  Google Scholar 

  66. Arkenau HT, Stichtenoth DO, Frölich JC et al (2002) Elevated nitric oxide levels in patients with chronic liver disease and cirrhosis correlate with disease stage and parameters of hyperdynamic circulation. Z Gastroenterol 40:907–912. https://doi.org/10.1055/s-2002-35413

    Article  CAS  PubMed  Google Scholar 

  67. Leverrier P, Montigny C, Garrigos M, Champeil P (2007) Metal binding to ligands: cadmium complexes with glutathione revisited. Anal Biochem 371:215–228. https://doi.org/10.1016/J.AB.2007.07.015

    Article  CAS  PubMed  Google Scholar 

  68. Mah V, Jalilehvand F (2010) Cadmium(II) complex formation with glutathione. J Biol Inorg Chem 15:441–458. https://doi.org/10.1007/S00775-009-0616-3

    Article  CAS  PubMed  Google Scholar 

  69. Delalande O, Desvaux H, Godat E et al (2010) Cadmium - glutathione solution structures provide new insights into heavy metal detoxification. FEBS J 277:5086–5096. https://doi.org/10.1111/J.1742-4658.2010.07913.X

    Article  CAS  PubMed  Google Scholar 

  70. Gebhardt R (2009) Prevention of cadmium-induced toxicity in liver-derived cells by the combination preparation Hepeel(®). Environ Toxicol Pharmacol 27:402–409. https://doi.org/10.1016/J.ETAP.2009.01.006

    Article  CAS  PubMed  Google Scholar 

  71. Rana SVS, Verma S (1996) Protective effects of GSH, vitamin E, and selenium on lipid peroxidation in cadmium-fed rats. Biol Trace Elem Res 51:161–168. https://doi.org/10.1007/BF02785435

    Article  CAS  PubMed  Google Scholar 

  72. Sandbichler AM, Höckner M (2016) Cadmium protection strategies—a hidden trade-off? Int J Mol Sci 17:139. https://doi.org/10.3390/IJMS17010139

    Article  PubMed  PubMed Central  Google Scholar 

  73. Adamis PDB, Gomes DS, Pinto MLCC et al (2004) The role of glutathione transferases in cadmium stress. Toxicol Lett 154:81–88. https://doi.org/10.1016/J.TOXLET.2004.07.003

    Article  CAS  PubMed  Google Scholar 

  74. Newairy AA, El-Sharaky AS, Badreldeen MM et al (2007) The hepatoprotective effects of selenium against cadmium toxicity in rats. Toxicology 242:23–30. https://doi.org/10.1016/J.TOX.2007.09.001

    Article  CAS  PubMed  Google Scholar 

  75. Jurczuk M, Brzóska MM, Moniuszko-Jakoniuk J et al (2004) Antioxidant enzymes activity and lipid peroxidation in liver and kidney of rats exposed to cadmium and ethanol. Food Chem Toxicol 42:429–438. https://doi.org/10.1016/J.FCT.2003.10.005

    Article  CAS  PubMed  Google Scholar 

  76. Casalino E, Calzaretti G, Sblano C, Landriscina C (2002) Molecular inhibitory mechanisms of antioxidant enzymes in rat liver and kidney by cadmium. Toxicology 179:37–50. https://doi.org/10.1016/S0300-483X(02)00245-7

    Article  CAS  PubMed  Google Scholar 

  77. Hossein-Khannazer N, Azizi G, Eslami S et al (2020) The effects of cadmium exposure in the induction of inflammation. Immunopharmacol Immunotoxicol 42:1–8

    Article  CAS  PubMed  Google Scholar 

  78. Rockwell P, Martinez J, Papa L, Gomes E (2004) Redox regulates COX-2 upregulation and cell death in the neuronal response to cadmium. Cell Signal 16:343–353. https://doi.org/10.1016/J.CELLSIG.2003.08.006

    Article  CAS  PubMed  Google Scholar 

  79. Miyahara T, Katoh T, Watanabe M et al (2004) Involvement of mitogen-activated protein kinases and protein kinase C in cadmium-induced prostaglandin E2 production in primary mouse osteoblastic cells. Toxicology 200:159–167. https://doi.org/10.1016/J.TOX.2004.03.014

    Article  CAS  PubMed  Google Scholar 

  80. Samuel VT, Shulman GI (2012) Mechanisms for insulin resistance: common threads and missing links. Cell 148:852–871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Samuel VT, Shulman GI (2016) The pathogenesis of insulin resistance: integrating signaling pathways and substrate flux. J Clin Invest 126:12–22. https://doi.org/10.1172/JCI77812

    Article  PubMed  PubMed Central  Google Scholar 

  82. Horita S, Nakamura M, Suzuki M, et al (2016) Selective insulin resistance in the kidney. Biomed Res. Int. 2016

  83. Avruch J (2007) MAP kinase pathways: the first twenty years. Biochim Biophys Acta - Mol Cell Res 1773:1150–1160. https://doi.org/10.1016/j.bbamcr.2006.11.006

    Article  CAS  Google Scholar 

  84. Treviño S, Diaz A (2020) Vanadium and insulin: partners in metabolic regulation. J. Inorg. Biochem. 208:111094

    Article  PubMed  Google Scholar 

  85. Hornberg JJ, Binder B, Bruggeman FJ et al (2005) Control of MAPK signalling: from complexity to what really matters. Oncogene 24:5533–5542. https://doi.org/10.1038/sj.onc.1208817

    Article  CAS  PubMed  Google Scholar 

  86. Syafril S, Lindarto D, Lelo A et al (2019) Correlations between insulin receptor substrate-1 with phosphoinositide 3-kinase and P38 mitogen-activated protein kinase levels after treatment of diabetic rats with Puguntano (Curanga Fel-Terrae [Merr.]) Leaf Extract. Open Access Maced J Med Sci 7:1247–1251. https://doi.org/10.3889/oamjms.2019.218

    Article  PubMed  PubMed Central  Google Scholar 

  87. Boucher J, Kleinridders A, Kahn CR (2014) Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harb Perspect Biol 6:a009191–a009191. https://doi.org/10.1101/cshperspect.a009191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Copps KD, Hançer NJ, Qiu W, White MF (2016) Serine 302 phosphorylation of mouse insulin receptor substrate 1 (IRS1) is dispensable for normal insulin signaling and feedback regulation by hepatic S6 kinase. J Biol Chem 291:8602. https://doi.org/10.1074/JBC.M116.714915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bae EJ, Xu J, Oh DY et al (2012) Liver-specific p70 S6 kinase depletion protects against hepatic steatosis and systemic insulin resistance. J Biol Chem 287:18769. https://doi.org/10.1074/JBC.M112.365544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Petersen MC, Shulman GI (2018) Mechanisms of insulin action and insulin resistance. Physiol Rev 98:2133–2223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zhang J, Wang X, Vikash V et al (2016) ROS and ROS-mediated cellular signaling. Oxid Med Cell Longev 2016:4350965. https://doi.org/10.1155/2016/4350965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Deora AA, Hajjar DP, Lander HM (2000) Recruitment and activation of Raf-1 kinase by nitric oxide-activated rats. Biochemistry 39:9901–9908. https://doi.org/10.1021/BI992954B

    Article  CAS  PubMed  Google Scholar 

  93. Wentworth CC, Alam A, Jones RM et al (2011) Enteric commensal bacteria induce extracellular signal-regulated kinase pathway signaling via formyl peptide receptor-dependent redox modulation of dual specific phosphatase 3. J Biol Chem 286:38448–38455. https://doi.org/10.1074/JBC.M111.268938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Banan A, Fields JZ, Zhang Y, Keshavarzian A (2001) Phospholipase C-gamma inhibition prevents EGF protection of intestinal cytoskeleton and barrier against oxidants. Am J Physiol Gastrointest Liver Physiol 281:G412. https://doi.org/10.1152/AJPGI.2001.281.2.G412

    Article  CAS  PubMed  Google Scholar 

  95. Franklin RA, Atherfold PA, McCubrey JA (2000) Calcium-induced ERK activation in human T lymphocytes occurs via p56(Lck) and CaM-kinase. Mol Immunol 37:675–683. https://doi.org/10.1016/S0161-5890(00)00087-0

    Article  CAS  PubMed  Google Scholar 

  96. Dann SG, Golas J, Miranda M et al (2014) p120 catenin is a key effector of a Ras-PKCɛ oncogenic signaling axis. Oncogene 33:1385–1394. https://doi.org/10.1038/ONC.2013.91

    Article  CAS  PubMed  Google Scholar 

  97. Cormet-boyaka E, Jolivette K, Bonnegarde-bernard A et al (2012) An NF-κB-independent and Erk1/2-dependent mechanism controls CXCL8/IL-8 responses of airway epithelial cells to cadmium. Toxicol Sci 125:418–429. https://doi.org/10.1093/TOXSCI/KFR310

    Article  CAS  PubMed  Google Scholar 

  98. Souza V, del Escobar M, C, Bucio L, et al (2009) NADPH oxidase and ERK1/2 are involved in cadmium induced-STAT3 activation in HepG2 cells. Toxicol Lett 187:180–186. https://doi.org/10.1016/j.toxlet.2009.02.021

    Article  CAS  PubMed  Google Scholar 

  99. Matović V, Buha A, Dukić-Ćosić D, Bulat Z (2015) Insight into the oxidative stress induced by lead and/or cadmium in blood, liver and kidneys. Food Chem Toxicol 78:130–140. https://doi.org/10.1016/J.FCT.2015.02.011

    Article  PubMed  Google Scholar 

  100. Wu W, Tsuchida H, Kato T et al (2015) Fat and carbohydrate in western diet contribute differently to hepatic lipid accumulation. Biochem Biophys Res Commun 461:681–686. https://doi.org/10.1016/J.BBRC.2015.04.092

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Vicerrectoria de Investigación y Posgrado [VIEP; TRMS-NAT21] through Ygnacio Martínez Laguna, CONACyT, and the “Sistema Nacional de Investigadores” of Mexico for the financial support of this research project [VESO, 533291] and Dr. Francisco Ramos Collazo (Bioterio “Claude Bernard”, BUAP) for his assistance and the donation of the animals used in this work. We also express our gratitude to Dra. Yhisell Domínguez Alonso of the Clinical Laboratory “CAISS S.A de C.V” for providing the facilities to carry out this study. We thank Professor Robert Simpson for editing the English language text.

Funding

CONACyT and the “Sistema Nacional de Investigadores” of Mexico for the financial support of this research project [VESO, 533291].

Author information

Authors and Affiliations

Authors

Contributions

Victor Enrique Sarmiento-Ortega, Eduardo Brambila, and Samuel Treviño designed the study and wrote the protocol. Victor Enrique Sarmiento-Ortega, Alfonso Díaz, Diana Moroni-González, and Samuel Treviño performed the experiments. Victor Enrique Sarmiento-Ortega, Eduardo Brambila, and Samuel Treviño managed the literature searches and analysis. Eduardo Brambila and Diana Moroni-González undertook the statistical analysis. Alfonso Díaz, Victor Enrique Sarmiento-Ortega, Eduardo Brambila, and Samuel Treviño wrote the first draft of the manuscript. All contributing authors have approved the final manuscript.

Corresponding author

Correspondence to Samuel Treviño.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarmiento-Ortega, V.E., Moroni-González, D., Diaz, A. et al. ROS and ERK Pathway Mechanistic Approach on Hepatic Insulin Resistance After Chronic Oral Exposure to Cadmium NOAEL Dose. Biol Trace Elem Res 201, 3903–3918 (2023). https://doi.org/10.1007/s12011-022-03471-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-022-03471-5

Keywords

Navigation