Skip to main content
Log in

Determination of Heavy Metal Levels and Health Risk Assessment of Raw Cow Milk in Guelma Region, Algeria

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

During the recent decades, adverse effects of unexpected contaminants, such as heavy metals on raw cow milk quality, have threatened human health. The objective of this study was to determine heavy metal levels in raw milk collected from autochthonous bovine breeds in the eastern region of Algeria. Eighty-eight pooled milk samples were analyzed using atomic absorption spectrometry for Pb, Cd, Cr, Cu, Ni, Fe, and Zn, and dietary risks were estimated for infants, children, and adults with minimum, average, and maximum milk consumption scenarios. Results revealed that Pb (0.94 ± 0.49 mg/kg), Cd (0.03 ± 0.01 mg/kg), and Cu (0.14 ± 0.08 mg/kg) levels in all analyzed samples were higher than their corresponding maximum residue levels (MRLs). The task hazard quotient (THQ) values suggest potential risk for infants in the three scenarios from Pb, Cd, and Cr; for children in the three scenarios from Pb and in the high scenario from Cr; and for adults in the medium and high scenarios from Pb. The hazard index (HI) values were higher than 1, and the contributions of each metal to the overall HI followed a descending order of Pb, Cr, Cd, Ni, Zn, Cu, and Fe with values of 68.19%, 15.39%, 6.91%, 4.94%, 3.42%, 0.88%, and 0.28%, respectively. Our results indicated that there may be a potential risk of heavy metals, especially Pb, for infants through raw cow milk consumption. Moreover, data actualization and continuous monitoring are necessary and recommended to evaluate heavy metal effects in future studies.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The data that support the findings of this article can be found in the online version as supplementary.

References

  1. Leksir C, Boudalia S, Moujahed N, Chemmam M (2019) Traditional dairy products in Algeria: case of Klila cheese. J Ethn Foods 6(1):7. https://doi.org/10.1186/s42779-019-0008-4

    Article  Google Scholar 

  2. Nag SK (2010) 5 - Pesticides, veterinary residues and other contaminants in milk. In: Griffiths MW (ed) Improving the Safety and Quality of Milk. Woodhead Publishing, pp 113–145. https://doi.org/10.1533/9781845699420.2.113

  3. Boudalia S, Benati D, Boukharouba R, Chemakh B, Chemmam M (2016) Physico-chemical properties and hygienic quality of raw and reconstituted milk in the region of Guelma-Algeria. Int J Agric Res 11(2):77–83

    Article  CAS  Google Scholar 

  4. Boukria O, El Hadrami EM, Boudalia S, Safarov J, Leriche F, Aït-Kaddour A (2020) The effect of mixing milk of different species on chemical, physicochemical, and sensory features of cheeses: a review. Foods 9(9):1309. https://doi.org/10.3390/foods9091309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hansen L, Ferrão MF (2018) Identification of possible milk adulteration using physicochemical data and multivariate analysis. Food Anal Methods 11(7):1994–2003. https://doi.org/10.1007/s12161-018-1181-6

    Article  Google Scholar 

  6. Claeys WL, Cardoen S, Daube G, De Block J, Dewettinck K, Dierick K, De Zutter L, Huyghebaert A, Imberechts H, Thiange P, Vandenplas Y, Herman L (2013) Raw or heated cow milk consumption: review of risks and benefits. Food Control 31(1):251–262. https://doi.org/10.1016/j.foodcont.2012.09.035

    Article  CAS  Google Scholar 

  7. OCDE/FAO (2018) OECD-FAO Agricultural Outlook 2018–2027. https://doi.org/10.1787/agr_outlook-2018-en

  8. Food Supply - Livestock and Fish Primary Equivalent (2013) http://www.fao.org/faostat/en/#data/CL. Accessed 5 April 2022

  9. Bentaleb M, Sersar I, Bendjama RFN, Bencharif M (2020) Behavior of the Algerian consumer in milk and dairy products. Clin Nutr ESPEN 40:609. https://doi.org/10.1016/j.clnesp.2020.09.607

    Article  Google Scholar 

  10. Belhadia M, Yakhlef H, Bourbouze A, Djermoun A (2014) Production et mise sur le marché du lait en Algérie, entre formel et informel: stratégies des éleveurs du périmètre irrigué du Haut-Cheliff. New Medit 13(1):41–50

    Google Scholar 

  11. Sraïri MT, Benyoucef MT, Kraiem K (2013) The dairy chains in North Africa (Algeria, Morocco and Tunisia): from self sufficiency options to food dependency? Springerplus 2(1):162. https://doi.org/10.1186/2193-1801-2-162

    Article  PubMed  PubMed Central  Google Scholar 

  12. Samiee F, Vahidinia A, Taravati Javad M, Leili M (2019) Exposure to heavy metals released to the environment through breastfeeding: a probabilistic risk estimation. Sci Total Environ 650:3075–3083. https://doi.org/10.1016/j.scitotenv.2018.10.059

    Article  CAS  PubMed  Google Scholar 

  13. Bousbia A, Boudalia S, Gueroui Y, Ghebache R, Amrouchi M, Belase B, Meguelati S, Belkheir B, Benidir M, Chelaghmia M (2019) Heavy metals concentrations in raw cow milk produced in the different livestock farming types in Guelma province (Algeria): contamination and risk assessment of consumption. JAPS: J Anim Plant Sci 29(2):386–395

  14. Swarup D, Patra RC, Naresh R, Kumar P, Shekhar P (2005) Blood lead levels in lactating cows reared around polluted localities; transfer of lead into milk. Sci Total Environ 349(1):67–71. https://doi.org/10.1016/j.scitotenv.2004.12.079

    Article  CAS  PubMed  Google Scholar 

  15. Norouzirad R, González-Montaña J-R, Martínez-Pastor F, Hosseini H, Shahrouzian A, Khabazkhoob M, Malayeri FA, Bandani HM, Paknejad M, Foroughi-Nia B (2018) Lead and cadmium levels in raw bovine milk and dietary risk assessment in areas near petroleum extraction industries. Sci Total Environ 635:308–314

    Article  CAS  PubMed  Google Scholar 

  16. Zhang Y, Wang S, Gao Z, Zhang H, Zhu Z, Jiang B, Liu J, Dong H (2021) Contamination characteristics, source analysis and health risk assessment of heavy metals in the soil in Shi River Basin in China based on high density sampling. Ecotoxicol Environ Saf 227:112926. https://doi.org/10.1016/j.ecoenv.2021.112926

    Article  CAS  PubMed  Google Scholar 

  17. Xu L, Lu A, Wang J, Ma Z, Pan L, Feng X, Luan Y (2015) Accumulation status, sources and phytoavailability of metals in greenhouse vegetable production systems in Beijing, China. Ecotoxicol Environ Saf 122:214–220. https://doi.org/10.1016/j.ecoenv.2015.07.025

    Article  CAS  PubMed  Google Scholar 

  18. Temiz H, Soylu A (2012) Heavy metal concentrations in raw milk collected from different regions of Samsun, Turkey. Int J Dairy Technol 65(4):516–522

    Article  CAS  Google Scholar 

  19. Škrbić BD, Buljovčić M, Antić I (2022) Comprehensive assessment of heavy elements and evaluation of potential human health risk in the urban environment: a case study from Novi Sad, Serbia. Environ Sci Pollut Res 29(25):38551–38566. https://doi.org/10.1007/s11356-022-18733-x

    Article  CAS  Google Scholar 

  20. Giri S, Mahato MK, Bhattacharjee S, Singh AK (2020) Development of a new noncarcinogenic heavy metal pollution index for quality ranking of vegetable, rice, and milk. Ecol Ind 113:106214. https://doi.org/10.1016/j.ecolind.2020.106214

    Article  CAS  Google Scholar 

  21. Vieira C, Morais S, Ramos S, Delerue-Matos C, Oliveira MBPP (2011) Mercury, cadmium, lead and arsenic levels in three pelagic fish species from the Atlantic Ocean: intra- and inter-specific variability and human health risks for consumption. Food Chem Toxicol 49(4):923–932. https://doi.org/10.1016/j.fct.2010.12.016

    Article  CAS  PubMed  Google Scholar 

  22. Muhib MI, Chowdhury MAZ, Easha NJ, Rahman MM, Shammi M, Fardous Z, Bari ML, Uddin MK, Kurasaki M, Alam MK (2016) Investigation of heavy metal contents in cow milk samples from area of Dhaka, Bangladesh. Int J Food Contam 3(16):1–10. https://doi.org/10.1186/s40550-016-0039-1

    Article  Google Scholar 

  23. Mazzocco JC, Jagadapillai R, Gozal E, Kong M, Xu Q, Barnes GN, Freedman JH (2020) Disruption of essential metal homeostasis in the brain by cadmium and high-fat diet. Toxicol Rep 7:1164–1169. https://doi.org/10.1016/j.toxrep.2020.08.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bandara SB, Towle KM, Monnot AD (2020) A human health risk assessment of heavy metal ingestion among consumers of protein powder supplements. Toxicol Rep 7:1255–1262. https://doi.org/10.1016/j.toxrep.2020.08.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Taylor AA, Tsuji JS, Garry MR, McArdle ME, Goodfellow WL, Adams WJ, Menzie CA (2020) Critical review of exposure and effects: implications for setting regulatory health criteria for ingested copper. Environ Manage 65(1):131–159. https://doi.org/10.1007/s00267-019-01234-y

    Article  PubMed  Google Scholar 

  26. Shahsavani A, Fakhri Y, Ferrante M, Keramati H, Zandsalimi Y, Bay A, Hosseini Pouya SR, Moradi B, Bahmani Z, Mousavi Khaneghah A (2017) Risk assessment of heavy metals bioaccumulation: fished shrimps from the Persian Gulf. Toxin Reviews 36(4):322–330. https://doi.org/10.1080/15569543.2017.1312451

    Article  CAS  Google Scholar 

  27. Malhat F, Hagag M, Saber A, Fayz AE (2012) Contamination of cows milk by heavy metal in Egypt. Bull Environ Contam Toxicol 88(4):611–613

    Article  CAS  PubMed  Google Scholar 

  28. Flora SJS, Agrawal S (2017) Chapter 31 - Arsenic, cadmium, and lead. In: Gupta RC (ed) Reproductive and Developmental Toxicology (Second Edition). Academic Press, pp 537–566. https://doi.org/10.1016/B978-0-12-804239-7.00031-7

  29. Zhong W, Zhang Y, Wu Z, Yang R, Chen X, Yang J, Zhu L (2018) Health risk assessment of heavy metals in freshwater fish in the central and eastern North China. Ecotoxicol Environ Saf 157:343–349. https://doi.org/10.1016/j.ecoenv.2018.03.048

    Article  CAS  PubMed  Google Scholar 

  30. Ismail A, Riaz M, Akhtar S, Farooq A, Shahzad MA, Mujtaba A (2017) Intake of heavy metals through milk and toxicity assessment. Pakistan J Zool 49(4):1413–1419. https://doi.org/10.17582/journal.pjz/2017.49.4.1413.1419

  31. Rahmani J, Fakhri Y, Shahsavani A, Bahmani Z, Urbina MA, Chirumbolo S, Keramati H, Moradi B, Bay A, Bjørklund G (2018) A systematic review and meta-analysis of metal concentrations in canned tuna fish in Iran and human health risk assessment. Food Chem Toxicol 118:753–765. https://doi.org/10.1016/j.fct.2018.06.023

    Article  CAS  PubMed  Google Scholar 

  32. Lawal A, Mohammed S, Damisa D (2006) Assessment of levels of copper, cadmium and lead in secretion of mammary gland of cows grazed on open fields. Sci World J 1(1):7–10. https://doi.org/10.4314/swj.v1i1.51689

    Article  Google Scholar 

  33. Eid R, Arab NTT, Greenwood MT (2017) Iron mediated toxicity and programmed cell death: a review and a re-examination of existing paradigms. Biochim Biophys Acta (BBA) - Mol Cell Res 1864 (2):399–430. https://doi.org/10.1016/j.bbamcr.2016.12.002

  34. Boudalia S, Ben Said S, Tsiokos D, Bousbia A, Gueroui Y, Mohamed-Brahmi A, Smeti S, Anastasiadou M, Symeon G (2020) BOVISOL Project: Breeding and management practices of indigenous bovine breeds: solutions towards a sustainable future. Sustainability 12(23):9891. https://doi.org/10.3390/su12239891

    Article  Google Scholar 

  35. Mohamed-Brahmi A, Tsiokos D, Ben Saïd S, Boudalia S, Smeti S, Bousbia A, Gueroui Y, Boudebbouz A, Anastasiadou M, Symeon GK (2022) Challenges and opportunities of the Mediterranean indigenous bovine populations: analysis of the different production systems in Algeria, Greece, and Tunisia. Sustainability 14(6):3356. https://doi.org/10.3390/su14063356

    Article  Google Scholar 

  36. Škrbić B, Živančev J, Mrmoš N (2013) Concentrations of arsenic, cadmium and lead in selected foodstuffs from Serbian market basket: estimated intake by the population from the Serbia. Food Chem Toxicol 58:440–448. https://doi.org/10.1016/j.fct.2013.05.026

    Article  CAS  PubMed  Google Scholar 

  37. Rohman A, Wijayanti E (2015) Development and validation of atomic absorption spectrometry for the determination of zinc and mercury analyzer for determination of mercury in cream cosmetics. 3(2). https://doi.org/10.14499/jfps

  38. Mitra S, Brukh R (2003) Sample preparation: an analytical perspective. In: Sample Preparation Techniques in Analytical Chemistry. pp 1–36. https://doi.org/10.1002/0471457817.ch1

  39. Boudebbouz A, Boudalia S, Bousbia A, Habila S, Boussadia MI, Gueroui Y (2021) Heavy metals levels in raw cow milk and health risk assessment across the globe: a systematic review. Sci Total Environ 751:141830. https://doi.org/10.1016/j.scitotenv.2020.141830

    Article  CAS  PubMed  Google Scholar 

  40. Montagnese C, Santarpia L, Iavarone F, Strangio F, Sangiovanni B, Buonifacio M, Caldara AR, Silvestri E, Contaldo F, Pasanisi F (2019) Food-based dietary guidelines around the world: Eastern Mediterranean and Middle Eastern countries. Nutrients 11(6):1325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Musaiger AO (2012) The food dome: dietary guidelines for Arab countries. Nutr Hosp 27(1):109–115. https://doi.org/10.1590/S0212-16112012000100012

    Article  CAS  PubMed  Google Scholar 

  42. Levent B, Ayşah Ö, Elif A, Fatih Ş (2020) Health risk assessment: heavy metals in fish from the southern Black Sea. Foods Raw Mater 8(1):115–124. https://doi.org/10.21603/2308-4057-2020-1-115-124

  43. Joint FAOWHOECoFAM, World Health O (2012) Safety evaluation of certain food additives and contaminants: prepared by the Seventy fourth meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA). World Health Organization, Geneva

    Google Scholar 

  44. EFSA (2014) European food safety authority: panel on contaminants in the chain food scientific opinion on the risks to public health related to the presence of chromium in food and drinking water. EFSA J 12:1–261

    Google Scholar 

  45. EFSA (2017) Overview on tolerable upper intake levels as derived by the Scientific Committee on Food (SCF) and the EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA)

  46. USIMPM (2001) US Institute of Medicine Panel on Micronutrients (USIMPM). Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. Available from: https://www.ncbi.nlm.nih.gov/books/NBK222310/ National Academies Press, Washington. https://doi.org/10.17226/10026. Accessed 5 April 2022

  47. EPA U (1989) Guidance manual for assessing human health risks from chemically contaminated fish and shellfish. Washington

  48. IRIS (2010) Integrated risk information system. Cincinnati, OH

  49. USEPA (2012) EPA Region III Risk-Based Concentration (RBC) Table 2008 Region III. 1650 Arch Street, Philadelphia, Pennsylvania 19103

  50. USEPA (2011) USEPA regional screening level (RSL) summary table: November 2011

  51. Akele M, Abebe D, Alemu A, Assefa A, Madhusudhan A, de Oliveira R (2017) Analysis of trace metal concentrations in raw cow’s milk from three dairy farms in North Gondar, Ethiopia: chemometric approach. Environ Monit Assess 189(10):499

    Article  CAS  PubMed  Google Scholar 

  52. Copat C, Bella F, Castaing M, Fallico R, Sciacca S, Ferrante M (2012) Heavy metals concentrations in fish from Sicily (Mediterranean Sea) and evaluation of possible health risks to consumers. Bull Environ Contam Toxicol 88(1):78–83. https://doi.org/10.1007/s00128-011-0433-6

    Article  CAS  PubMed  Google Scholar 

  53. Gioiosa L, Palanza P, Parmigiani S, Vom Saal FS (2015) Risk evaluation of endocrine-disrupting chemicals: effects of developmental exposure to low doses of bisphenol A on behavior and physiology in mice (Mus musculus). Dose-Response 13(4):1–8. https://doi.org/10.1177/1559325815610760

    Article  CAS  Google Scholar 

  54. Folia M, Boudalia S, Ménétrier F, Decocq L, Pasquis B, Schneider C, Bergès R, Artur Y, Canivenc-Lavier M-C (2013) Oral homeostasis disruption by medical plasticizer component bisphenol A in adult male rats. Laryngoscope 123(6):1405–1410. https://doi.org/10.1002/lary.23791

    Article  CAS  PubMed  Google Scholar 

  55. Giri S, Singh AK (2020) Human health risk assessment due to metals in cow’s milk from Singhbhum copper and iron mining areas, India. J Food Sci Technol 57(4):1415–1420

    Article  CAS  PubMed  Google Scholar 

  56. Başaran B (2022) An assessment of heavy metal level in infant formula on the market in Turkey and the hazard index. J Food Compos Anal 105:104258. https://doi.org/10.1016/j.jfca.2021.104258

    Article  CAS  Google Scholar 

  57. Năstăsescu V, Mititelu M, Goumenou M, Docea AO, Renieri E, Udeanu DI, Oprea E, Arsene AL, Dinu-Pîrvu CE, Ghica M (2020) Heavy metal and pesticide levels in dairy products: evaluation of human health risk. Food Chem Toxicol 146:111844. https://doi.org/10.1016/j.fct.2020.111844

    Article  CAS  PubMed  Google Scholar 

  58. R Development Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

  59. IDF (1979) Metal contamination in milk and milk products Int Dairy Fed Bull Document no 105

  60. Olsson I-M (2002) Biomonitoring of cadmium in cattle, pigs and humans, vol 118. vol 118. Swedish University of Agricultural Sciences

  61. Tu Y-J, Han X-Y, Xu Z-R, Wang Y-Z, Li W-F (2007) Effect of cadmium in feed on organs and meat colour of growing pigs. Vet Res Commun 31(5):621–630. https://doi.org/10.1007/s11259-007-3468-8

    Article  PubMed  Google Scholar 

  62. Caggiano R, Sabia S, D’Emilio M, Macchiato M, Anastasio A, Ragosta M, Paino S (2005) Metal levels in fodder, milk, dairy products, and tissues sampled in ovine farms of Southern Italy. Environ Res 99(1):48–57. https://doi.org/10.1016/j.envres.2004.11.002

    Article  CAS  PubMed  Google Scholar 

  63. Pacyna JM, Pacyna EG (2001) An assessment of global and regional emissions of trace metals to the atmosphere from anthropogenic sources worldwide. Environ Rev 9(4):269–298. https://doi.org/10.1139/a01-012

    Article  CAS  Google Scholar 

  64. Bencharif-Madani F, Ali-Khodja H, Kemmouche A, Terrouche A, Lokorai K, Naidja L, Bouziane M (2019) Mass concentrations, seasonal variations, chemical compositions and element sources of PM10 at an urban site in Constantine, northeast Algeria. J Geochem Explor 206:106356. https://doi.org/10.1016/j.gexplo.2019.106356

    Article  CAS  Google Scholar 

  65. Ministre de l'Energie et des Mines (2021) Generalization of the use of unleaded gasoline in Algeria. Available online: https://www.energy.gov.dz/?article=journe-technique-essence-fr. Accessed on 15 Dec 2021

  66. Nicolas E, Ruiz-Pino D, Buat-Ménard P, Bethoux JP (1994) Abrupt decrease of lead concentration in the Mediterranean sea: a response to antipollution policy. Geophys Res Lett 21(19):2119–2122. https://doi.org/10.1029/94GL01277

    Article  CAS  Google Scholar 

  67. Youbi A, Zerguine K, Houilia A, Farfar K, Soumati B, Berrebbah H, Djebar MR, Souiki L (2020) Potential use of morphological deformities in Chironomus (Diptera: Chironomidae) as a bioindicator of heavy metals pollution in North-East Algeria. Environ Sci Pollut Res 27(8):8611–8620. https://doi.org/10.1007/s11356-019-07459-y

    Article  CAS  Google Scholar 

  68. Talbi H, Kachi S (2019) Evaluation of heavy metal contamination in sediments of the Seybouse River, Guelma–Annaba, Algeria. Journal of Water and Land Development

  69. Bigucu E, Kaptan B, Palabiyik İ, Öksuz Ö (2016) The effect of environmental factors on heavy metal and mineral compositions of raw milk and water samples

  70. Chirinos-Peinado DM, Castro-Bedriñana JI (2020) Lead and cadmium blood levels and transfer to milk in cattle reared in a mining area. Heliyon 6(3):e03579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Capcarova M, Binkowski LJ, Stawarz R, Schwarczova L, Massanyi P (2019) Levels of essential and xenobiotic elements and their relationships in milk available on the Slovak Market with the estimation of consumer exposure. Biol Trace Elem Res 188(2):404–411

    Article  CAS  PubMed  Google Scholar 

  72. Abdalla M, Hassabo A, Elsheikh N (2013) Assessment of some heavy metals in waste water and milk of animals grazed around sugar cane plants in Sudan. Livest Res Rural Dev 25:12

    Google Scholar 

  73. Elatrash S, Atoweir N (2014) Determination of lead and cadmium in raw cow’s milk by graphite furnace atomic absorption spectroscopy. Int J Chem Sci 12(1):92–100

    CAS  Google Scholar 

  74. Jolly YN, Iqbal S, Rahman MS, Kabir J, Akter S, Ahmad I (2017) Energy dispersive X-ray fluorescence detection of heavy metals in Bangladesh cows’ milk. Heliyon 3(9):e00403. https://doi.org/10.1016/j.heliyon.2017.e00403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhou X, Qu X, Zhao S, Wang J, Li S, Zheng N (2017) Analysis of 22 elements in milk, feed, and water of dairy cow, goat, and buffalo from different regions of China. Biol Trace Elem Res 176(1):120–129

    Article  CAS  PubMed  Google Scholar 

  76. Su C, Gao Y, Qu X, Zhou X, Yang X, Huang S, Han L, Zheng N, Wang J (2021) The occurrence, pathways, and risk assessment of heavy metals in raw milk from industrial areas in China. Toxics 9(12):320. https://doi.org/10.3390/toxics9120320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Belete T, Hussen A, Rao VM (2014) Determination of concentrations of selected heavy metals in cow’s milk: Borena Zone, Ethiopia. J Health Sci 4(5):105–112

    Google Scholar 

  78. El Sayed EM, Hamed AM, Badran SM, Mostafa AA (2011) A survey of selected essential and heavy metals in milk from different regions of Egypt using ICP-AES. Food Additives and Contaminants: Part B 4(4):294–298

    Article  Google Scholar 

  79. Fenta MM (2014) Heavy metals concentration in effluents of textile industry, Tikur Wuha River and milk of cows watering on this water source, Hawassa, Southern Ethiopia. Res J Environ Sci 8(8):422–434

    Article  Google Scholar 

  80. Giri S, Singh AK (2019) Human health risk assessment due to metals in cow’s milk from Singhbhum copper and iron mining areas, India. J Food Sci Technol 1–6

  81. Shahbazi Y, Ahmadi F, Fakhari F (2016) Voltammetric determination of Pb, Cd, Zn, Cu and Se in milk and dairy products collected from Iran: an emphasis on permissible limits and risk assessment of exposure to heavy metals. Food Chem 192(2016):1060–1067. https://doi.org/10.1016/j.foodchem.2015.07.123

    Article  CAS  PubMed  Google Scholar 

  82. Arianejad M, Alizadeh M, Bahrami A, Arefhoseini SR (2015) Levels of some heavy metals in raw cow's milk from selected milk production sites in Iran: is there any health concern? Health Promot Perspect 5(3):176. https://doi.org/10.15171/hpp.2015.021

  83. Giri A, Bharti VK, Kalia S, Kumar B, Chaurasia OP (2021) Health risk assessment of heavy metals through cow milk consumption in trans-Himalayan high-altitude region. Biol Trace Elem Res 199(12):4572–4581. https://doi.org/10.1007/s12011-021-02593-6

    Article  CAS  PubMed  Google Scholar 

  84. Król J, Litwiñczuk Z, Brodziak A, Kêdzierska-Matysek M (2012) Content of selected essential and potentially toxic trace elements in milk of cows maintained in eastern Poland. J Elementol 17(4):597–608. https://doi.org/10.5601/jelem.2012.17.4.04

    Article  Google Scholar 

  85. Iftikhar B, Arif S, Siddiqui S, Khattak R (2014) Assessment of toxic metals in dairy milk and animal feed in Peshawar, Pakistan. Biotechnol J Int 883–893

  86. Ahmad I, Zaman A, Samad N, Ayaz M, Rukh S, Akbar A (2017) Atomic absorption spectrophotometery detection of heavy metals in milk of camel, cattle, buffalo and goat from various areas of Khyber-Pakhtunkhwa (KPK). Pakistan J Anal Bioanal Tech 8(367):2

    Google Scholar 

  87. Cadar O, Miclean M, Cadar S, Tanaselia C, Senila L, Senila M (2015) Assessment of heavy metals in cows milk in Rodnei mountains area, Romania. Environ Eng Manag J 14(11):2523–2528

    Article  CAS  Google Scholar 

  88. Castro-Bedriñana J, Chirinos-Peinado D, Ríos-Ríos E, Machuca-Campuzano M, Gómez-Ventura E (2021) Dietary risk of milk contaminated with lead and cadmium in areas near mining-metallurgical industries in the Central Andes of Peru. Ecotoxicol Environ Saf 220:112382. https://doi.org/10.1016/j.ecoenv.2021.112382

    Article  CAS  PubMed  Google Scholar 

  89. Raghu V (2015) Study of dung, urine, and milk of selected grazing animals as bioindicators in environmental geoscience—a case study from Mangampeta barite mining area, Kadapa District, Andhra Pradesh, India. Environ Monit Assess 187(1):4080

    Article  CAS  PubMed  Google Scholar 

  90. World Health O, Food, Agriculture Organization of the United N, Joint FAOWHOECoFAM (2011) Evaluation of certain food additives and contaminants: seventy-third [73rd] report of the Joint FAO/WHO Expert Committee on Food Additives. World Health Organization, Geneva

    Google Scholar 

  91. Badis B, Rachid Z, Esma B (2014) Levels of selected heavy metals in fresh meat from cattle, sheep, chicken and camel produced in Algeria. Annu Res Rev Biol 1260–1267

  92. Amira A, Merad I, Almeida CMR, Guimarães L, Soltani N (2018) Seasonal variation in biomarker responses of Donax trunculus from the Gulf of Annaba (Algeria): implication of metal accumulation in sediments. CR Geosci 350(4):173–179. https://doi.org/10.1016/j.crte.2018.02.002

    Article  Google Scholar 

  93. Khatib Zagh N, Bachari NEI (2019) Study of the toxic contaminants cadmium and lead in sardines (Sardina pilchardus) in the Bay of Algiers (Algeria). J Aquat Food Prod Technol 28(6):667–676. https://doi.org/10.1080/10498850.2019.1628150

    Article  CAS  Google Scholar 

  94. Mehouel F, Bouayad L, Hammoudi AH, Ayadi O, Regad F (2019) Evaluation of the heavy metals (mercury, lead, and cadmium) contamination of sardine (Sardina pilchardus) and swordfish (Xiphias gladius) fished in three Algerian coasts. Vet World 12 (1):7–11. https://doi.org/10.14202/vetworld.2019.7-11

  95. Alik O, Oudainia SE, Bouchebbah S, Dehbi-Zebboudj A, Zerouali-Khodja F (2021) Heavy metal and trace element bioaccumulation in muscle and liver of the Merlu (Linneaus, 1758) from the Gulf of Bejaia in Algeria. Ekológia (Bratislava) 40(1):91–100. https://doi.org/10.2478/eko-2021-0011

    Article  Google Scholar 

  96. Guettaf M, Rachedi M, Gueroui Y, Bousbia A, Chelaghmia MA, Maoui A (2019) Age and growth of common bream, Abramis brama (L.), caught at Hammam Debagh Reservoir (Guelma, northeast Algeria). Fish Aquat Life 27(3). https://doi.org/10.2478/aopf-2019-0017

  97. Islam MS, Ahmed MK, Habibullah-Al-Mamun M, Masunaga S (2014) Trace metals in soil and vegetables and associated health risk assessment. Environ Monit Assess 186(12):8727–8739. https://doi.org/10.1007/s10661-014-4040-y

    Article  CAS  PubMed  Google Scholar 

  98. EFSA (2012) Lead dietary exposure in the European population. EFSA J 10(7). https://doi.org/10.2903/j.efsa.2012.2831.

  99. EFSA (2012) Cadmium dietary exposure in the European population (37 pp.). EFSA J 10(1):2551. https://doi.org/10.2903/j.efsa.2012.2551

Download references

Acknowledgements

The authors would like to acknowledge breeders from different provinces for their consent and active participation in this study.

Funding

This work is part of the research activity carried out within the (i) ARIMNet2-BOVISOL (Coordination of Agricultural Research in the Mediterranean. EC FP7 project N°618127; www.arimnet2.net)-BOVISOL (Breeding and management practices of indigenous bovine breeds: Solutions towards a sustainable future) project funded by the Algerian Ministry of Higher Education and Scientific Research and Scientific Research and from the Directorate General for Scientific Research and Technological Development (DGRSDT) and (ii). “Dairy production: Optimization of production techniques, valorization and quality control” project funded by the Algerian Ministry of Higher Education and Scientific Research, grant agreement no: D00L01UN240120180001.

Author information

Authors and Affiliations

Authors

Contributions

Ali Boudebbouz and Meriem Imen Boussadia: conceptualization, data curation, formal analysis, investigation, methodology, and writing—original draft.

Sofiane Boudalia: conceptualization, investigation, methodology, data curation, formal analysis, funding acquisition, project administration, methodology, and writing—original draft and review and editing.

Yassine Gueroui, Aissam Bousbia, and Rabah Zebsa: conceptualization, investigation, methodology, and writing—review and editing.

George Symeon: funding acquisition, project administration, and writing—review and editing.

All authors discussed the review topic and contents and contributed to the final manuscript.

Corresponding author

Correspondence to Sofiane Boudalia.

Ethics declarations

Ethical Statement

The local Data Protection Board (DPB) and the local ethics committee have approved experimental protocols. The study involved data and/or milk sample collection from different farms, and participants were informed of the purpose of the project; they have given their consent for their participation (complete the survey questionnaire and/or provide milk samples) and the use of the collected data and the generated results from our analysis for scientific publications.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 309 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boudebbouz, A., Boudalia, S., Bousbia, A. et al. Determination of Heavy Metal Levels and Health Risk Assessment of Raw Cow Milk in Guelma Region, Algeria. Biol Trace Elem Res 201, 1704–1716 (2023). https://doi.org/10.1007/s12011-022-03308-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-022-03308-1

Keywords

Navigation