Skip to main content
Log in

Impact of Nickel Oxide Nanoparticles (NiO) on Oxidative Stress Biomarkers and Hemocyte Counts of Mytilus galloprovincialis

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

In this study, the toxic effects of nickel oxide nanoparticles (NiO-NPs) on the model organism Mediterranean mussel (Mytilus galloprovincialis) gill, digestive gland, and hemolymph tissues for 96 h were investigated. Lipid peroxidation (MDA) determination was performed to reveal the oxidative stress generation potential of nanoparticles, and superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), and glutathione-S-transferase (GST) enzyme levels were measured to determine antioxidant responses. Lysosomal membrane stability and total hemocyte counts were performed to determine cytotoxic effects. All parameters were altered in different concentrations of NiO-NPs (2, 20, and 200 mg L−1). The SOD levels increased depending on the concentration (p < 0.05), and the increases in CAT, GPx, and GST levels were lower at 20 mg L−1 concentration (p < 0.05). There was a slight difference between the exposure and the control groups in terms of GR enzyme. The MDA level increased in parallel with the concentration (p < 0.05), the stability of the cell membrane (p < 0.05), and the number of hemocyte cells decreased as a result of exposure (p < 0.05). The results emphasize that NiO-NPs may have negative effects on the aquatic environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are not publicly available but are available from the corresponding author on reasonable request.

References

  1. Zhang XQ, Yin LH, Tang M, Pu YP (2011) ZnO, TiO2 SiO2, and Al2O3 nanoparticles-induced toxic effects on human fetal lung fibroblasts. Biomed Environ Sci 24:661–669

    CAS  PubMed  Google Scholar 

  2. Nohynek GJ, Lademann J, Ribaud C, Roberts MS (2007) Grey goo on the skin? Nanotechnology, cosmetic and sunscreen safety. Crit Rev Toxicol 37:251–277

    Article  CAS  PubMed  Google Scholar 

  3. Tedesco S, Doyle H, Blasco J, Redmond G, Sheehan D (2010) Oxidative stress and toxicity of gold nanoparticles in Mytilus edulis. Aquat toxicol 100(2):178–186

    Article  CAS  PubMed  Google Scholar 

  4. Hull MS, Vikesland PJ, Schultz IR (2012) Uptake and retention of metallic nanoparticles in the Mediterranean mussel (Mytilus galloprovincialis). Aquat Toxicol 140:89–97

    Google Scholar 

  5. Zhu T, Chen JS, Lou XW (2012) Highly efficient removal of organic dyes from waste water using hierarchical NiO spheres with high surface area. J Phys Chem C 116(12):6873–6878

    Article  CAS  Google Scholar 

  6. Srivastava NK, Jha MK, Sreekrishnan TR (2014) Removal of Cr (VI) from waste water using NiO nanoparticles. Int J Sci Environ 3(2):395–402

    Google Scholar 

  7. Ravindhranath K, Ramamoorty M (2017) Nickel based nano particles as adsorbents in water purification methods-a review. Orient J Chem 33(4):1603

    Article  CAS  Google Scholar 

  8. Zhou D, Xie D, Xia X, Wang X, Gu C, Tu J (2017) All-solid-state electrochromic devices based on WO 3|| NiO films: material developments and future applications. Sci China Chem 60 1 3 12

  9. Salimi A, Sharifi E, Noorbakhsh A, Soltanian S (2007) Direct electrochemistry and electrocatalytic activity of catalase immobilized onto electrodeposited nanoscale islands of nickel oxide. Biophys Chem 125:540–548

    Article  CAS  PubMed  Google Scholar 

  10. Rao KV, Sunandana CS (2008) Effect of fuel to oxidizer ratio on the structure, micro structure and EPR of combustion synthesized NiO nanoparticles. J Nanosci Nanotechnol 8:4247–4253

    Article  CAS  PubMed  Google Scholar 

  11. Ahamed M, Ali D, Alhadlaq HA, Akhtar MJ (2013) Nickel oxide nanoparticles exert cytotoxicity via oxidative stress and induce apoptotic response in human liver cells (HepG2). Chemosphere 93:2514–2522

    Article  CAS  PubMed  Google Scholar 

  12. Moore MN (2006) Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ Int 32:967–976

    Article  CAS  PubMed  Google Scholar 

  13. Bhatt I, Tripathi BN (2011) Interaction of engineered nanoparticles with various components of the environment and possible strategies for their risk assessment. Chemosphere 82(3):308–317

    Article  CAS  PubMed  Google Scholar 

  14. Gomes T, Pereira CG, Cardoso C, Pinheiro JP, Cancio I, Bebianno MJ (2012) Accumulation and toxicity of copper oxide nanoparticles in the digestive gland of Mytilus galloprovincialis. Aquat Toxicol 118:72–79

    Article  PubMed  CAS  Google Scholar 

  15. Baun A, Hartmann NB, Grieger K, Kisk KO (2008) Ecotoxicity of engineered nanoparticles to aquatic invertebrates: a brief review and recommendations for future toxicity testing. Ecotoxicology 17:387–395

    Article  CAS  PubMed  Google Scholar 

  16. Canesi L, Fabbri R, Gallo G, Vallotto D, Marcomini A, Pojana GJAT (2010) Biomarkers in Mytilus galloprovincialis exposed to suspensions of selected nanoparticles (Nano carbon black, C60 fullerene, Nano-TiO2, Nano-SiO2). Aquat Toxicol 100(2):168–177

    Article  CAS  PubMed  Google Scholar 

  17. Luoma SN (2008) Silver nanotechnologies and the environment. Washington DC: Woodrow Wilson In International Center for Scholars and The Pew Charitable Trusts

  18. Canesi L, Corsi I (2016) Effects of nanomaterials on marine invertebrates. Sci Total Environ 565:933–940

    Article  CAS  PubMed  Google Scholar 

  19. Cheng X, Kan AT, Tomson MB (2004) Naphthalene adsorption and desorption from aqueous C60 fullerene. J Chem Eng Data 49(3):675–683. https://doi.org/10.1021/je030247m

    Article  CAS  Google Scholar 

  20. Gilliland FD, Li YF, Saxon A, Diaz-Sanchez D (2004) Effect of glutathione-S-transferase M1 and P1 genotypes on xenobiotic enhancement of allergic responses: randomised, placebo-controlled crossover study. The Lancet 363(9403):119–125

    Article  CAS  Google Scholar 

  21. Winston GW, Di Giulio RT (1991) Prooxidant and antioxidant mechanisms in aquatic organisms. Aquat Toxicol 19:137–161

    Article  CAS  Google Scholar 

  22. Valavanidis A, Vlahogianni T, Dassenakis M, Scoullos M (2006) Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotoxicol Environ Saf 64(2):178–189

    Article  CAS  PubMed  Google Scholar 

  23. Mohamed K, Zine K, Fahima K, Abdelfattah E, Sharifudin SM, Duduku K (2018) NiO nanoparticles induce cytotoxicity mediated through ROS generation and impairing the antioxidant defense in the human lung epithelial cells (A549): Preventive effect of Pistacia lentiscus essential oil. Toxicol Rep 5:480–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Regoli F, Gorbi S, Frenzilli G, Nigro M, Corsi I, Focardi S, Winston GW (2002) Oxidative stress in ecotoxicology: from the analysis of individual antioxidants to a more integrated approach. Mar Environ Res 54:419–423

    Article  CAS  PubMed  Google Scholar 

  25. Regoli F, Pellegrini D, Winston GW, Gorbi S, Giuliani S, Virno-Lamberti C (2002) Application of biomarkers for assessing the biological impact of dredged materials in the Mediterranean: the relationship between antioxidant responses and susceptibility to oxidative stress in the red mullet (Mullus barbatus). Mar Pollut Bull 44:912–922

    Article  CAS  PubMed  Google Scholar 

  26. Otitoju O, Onwurah INE (2011). Biomarkers of pesticide-contaminated environment. Pesticides in the modern world-pests control and pesticides exposure and toxicity assesment 241 252

  27. Otitoju O, Onwurah INE (2007). Glutathione S-transferase (GST) activity as a biomarker in ecological risk assessment of pesticide contaminated environment. African J Biotech 6 12

  28. Olusi SO (2002) Obesity is an independent risk factor for plasma lipid peroxidation and depletion of erythrocyte cytoprotective enzymes in humans. Int J Obes 26:1159–1164

    Article  CAS  Google Scholar 

  29. Meister A (1983) Selective modification of glutathione metabolism. Science 220(4596):472–477

    Article  CAS  PubMed  Google Scholar 

  30. Wu G, Fang Y-Z, Yang S, Lupton JR, Turner ND (2004) Glutathione metabolism and its implications for health. J Nutr 134(3):489–492

    Article  CAS  PubMed  Google Scholar 

  31. Hayes JD, Flanagan JU, Jowsey IR (2005) Glutathione transferases. Annu Rev Pharmacol Toxicol 45:51–88

    Article  CAS  PubMed  Google Scholar 

  32. Hu W, Culloty S, Darmody G, Lynch S, Davenport J, Ramirez-Garcia S, Sheehan D (2014) Toxicity of copper oxide nanoparticles in the blue mussel, Mytilus edulis: a redox proteomic investigation. Chemosphere 108:289–299

    Article  CAS  PubMed  Google Scholar 

  33. Ruiz P, Katsumiti A, Nieto JA, Bori J, Jimeno-Romero A, Reip P, Cajaraville MP (2015) Short-term effects on antioxidant enzymes and long-term genotoxic and carcinogenic potential of CuO nanoparticles compared to bulk CuO and ionic copper in mussels Mytilus galloprovincialis. Mar Environ Res 111:107–120

    Article  CAS  PubMed  Google Scholar 

  34. Sendra M, Volland M, Balbi T, Fabbri R, Yeste MP, Gatica JM, Blasco J (2018) Cytotoxicity of CeO2 nanoparticles using in vitro assay with Mytilus galloprovincialis hemocytes: relevance of zeta potential, shape and biocorona formation. Aquat Toxicol 200:13–20

    Article  CAS  PubMed  Google Scholar 

  35. Huang X, Liu Y, Liu Z, Zhao Z, Dupont S, Wang WuF, Y, (2018) Impact of zinc oxide nanoparticles and ocean acidification on antioxidant responses of Mytilus coruscus. Chemosphere 196:182–195

    Article  CAS  PubMed  Google Scholar 

  36. Li J, Schiavo S, Xiangli D, Rametta G, Miglietta ML, Oliviero M, Manzo S (2018) Early ecotoxic effects of ZnO nanoparticle chronic exposure in Mytilus galloprovincialis revealed by transcription of apoptosis and antioxidant-related genes. Ecotoxicology 27(3):369–384

    Article  CAS  PubMed  Google Scholar 

  37. Libralato G, Minetto D, Totaro S, Mičetić I, Pigozzo A, Sabbioni E, Ghirardini AV (2013) Embryotoxicity of TiO2 nanoparticles to Mytilus galloprovincialis (Lmk). Mar Environ Res 92:71–78

    Article  CAS  PubMed  Google Scholar 

  38. Kovrižnych JA, Sotníková R, Zeljenková D, Rollerová E, Szabová E (2014) Long-term (30 days) toxicity of NiO nanoparticles for adult zebrafish Danio rerio. Interdiscip Toxicol 7(1):23–26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Imani A, Razi M, Nazdar N, Habibi S, Zamani A (2017) Antioxidative indices and liver histology of rainbow trout (Oncorhynchus mykiss) fed diets containing nickel oxide nanoparticles and silymarin. Veterinary Researches & Biological Products 30(4):248–259

    Google Scholar 

  40. Jayaseelan C, Rahuman AA, Ramkumar R, Perumal P, Rajakumar G, Kirthi AV, Marimuthu S (2014) Effect of sub-acute exposure to nickel nanoparticles on oxidative stress and histopathological changes in Mozambique tilapia, Oreochromis mossambicus. Ecotoxicol Environ Saf 107:220–228

    Article  CAS  PubMed  Google Scholar 

  41. Nazdar N, Imani A, Noori F, Moghanlou KS (2018) Effect of silymarin supplementation on nickel oxide nanoparticle toxicity to rainbow trout (Oncorhynchus mykiss) fingerlings: pancreas tissue histopathology and alkaline protease activity. Iran J Sci Technol Trans A Sci 42(2):353–361

    Article  Google Scholar 

  42. Ates M, Demir V, Arslan Z, Camas M, Celik F (2016) Toxicity of engineered nickel oxide and cobalt oxide nanoparticles to Artemia salina in seawater. Water Air Soil Pollut 227(3):70

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Flöhe L, Ötting F (1984) Superoxide dismutase assays Methods of Enzymology 105:93–104

    Google Scholar 

  44. Clairborne A (1985) Catalase activity. In: Grenwald RA (ed) Handbook of Methods of Oxygen Radical Research. CRC Press, Boca Raton, FL, pp 283–284

    Google Scholar 

  45. Wendel A (1980) Glutathione peroxidase. In: Jakoby WB (ed) Enzymatic Basis of Detoxification I. Academic Press, New York, pp 333–353

    Chapter  Google Scholar 

  46. Goldberg DM, Spooner RJ (1983) Glutathione reductase.-In: Bergmeyer, H.U. (ed.): Methods of Enzymatic Analysis. Vol. III. Verlag Chemie, Weinheim-Deerfield Beach 258 265

  47. Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 249 25 7130 7139

  48. Bradford MM (1976) A rapid sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  49. Jain SK, McVie R, Duett J, Herbst JJ (1989) Erythrocyte membrane lipid peroxidation and glycosylated hemoglobin in diabetes. Diabetes 38(12):1539–1543

    Article  CAS  PubMed  Google Scholar 

  50. Camejo G, Halberg C, Manschik-Lundin A, Hurt-Camejo E, Rosengren B, Olsson H, Hansson GI, Forsberg GB, Ylhen B (1999) Hemin binding and oxidation of lipoproteins in serum: mechanisms and effect on the interaction of LDL with human macrophages. J Lipid Res 39:755–765

    Article  Google Scholar 

  51. Seglen PO (1983) Inhibitors of lysosomal function. Methods Enzymol 96:737–764

    Article  CAS  PubMed  Google Scholar 

  52. Lowe DM, Soverchia C, Moore MN (1995) Lysosomal membrane responses in the blood and digestive cells of mussels experimentally exposed to fluoranthene. Aquat toxicol 33(2):105–112

    Article  CAS  Google Scholar 

  53. Martínez-Gómez C, Bignell J, Lowe D (2015) Lysosomal membrane stability in mussels

  54. Moore MN, Readman JA, Readman JW, Lowe DM, Frickers PE, Beesley A (2009) Lysosomal cytotoxicity of carbon nanoparticles in cells of the molluscan immune system: an in vitro study. Nanotoxicology 3(1):40–45

    Article  CAS  Google Scholar 

  55. Söderhäll K, Smith VJ (1983) Separation of the haemocyte populations of Carcinus maenas and other marine decapods, and prophenoloxidase distribution. Dev Comp Immunol 7(2):229–239

    Article  PubMed  Google Scholar 

  56. Moore MN, Lowe DM, Kohler A (2004) Measuring lysosomal membrane stability. ICES Techniques in Marine Environmental Sciences. ICES J Mar Sci 36:1–31

    Google Scholar 

  57. Coricovac DE, Moacă EA, Pinzaru I, Cîtu C, Soica C, Mihali CV, Dehelean CA (2017) Biocompatible colloidal suspensions based on magnetic iron oxide nanoparticles: synthesis, characterization and toxicological profile. Front Pharmacol 8:154

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Balmuri SR, Selvaraj U, Kumar VV, Anthony SP, Tsatsakis AM, Golokhvast KS, Raman T (2017) Effect of surfactant in mitigating cadmium oxide nanoparticle toxicity: implications for mitigating cadmium toxicity in environment. Environ Res 152:141–149

    Article  CAS  PubMed  Google Scholar 

  59. Sharma V, Shukla RK, Saxena N, Parmar D, Das M, Dhawan A (2009) DNA damaging potential of zinc oxide nanoparticles in human epidermal cells. Toxicol Lett 185(3):211–218

    Article  CAS  PubMed  Google Scholar 

  60. Rao KV, Sunandana CS (2008) Co3O4 nanoparticles by chemical combustion: effect of fuel to oxidizer ratio on structure, microstructure and EPR. Solid State Commun 148(1–2):32–37

    CAS  Google Scholar 

  61. Donaldson K, Stone V, Tran CL, Kreyling W, Borm PJA (2004) Occupational and environmental medicine. Nanotoxicology 61:727–728

    CAS  Google Scholar 

  62. Koehler A, Marx U, Broeg K, Bahns S, Bressling J (2008) Effects of nanoparticles in Mytilus edulis gills and hepatopancreas–a new threat to marine life? Mar Environ Res 66(1):12–14

    Article  CAS  PubMed  Google Scholar 

  63. Han ZX, Zhang M, Lv CX (2012) Bioaccumulation and toxicity of NiO nanoparticles in Gracilaria lemaneiformis. In Adv Mater Res Trans Tech Publ Ltd 518:942–945

    Google Scholar 

  64. Ward JE, Macdonald BA, Thompson RJ, Beninger PG (1993) Mechanisms of suspension-feeding in bivalved-resolution of current controversies by means of endoscopy. Limnol Oceanogr 38:265–272

    Article  Google Scholar 

  65. Young IS, Woodside JV (2001) Antioxidants in health and disease. J Clin Pathol 54:176–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Greenwald RA (1990) Superoxide dismutase and catalase as therapeutic agents for human diseases. A critical review. Free Radic Biol Med 8 2 201 209

  67. Ertürk Gürkan S, Gürkan M (2021) Toxicity of gamma aluminium oxide nanoparticles in the Mediterranean mussel (Mytilus galloprovincialis): histopathological alterations and antioxidant responses in the gill and digestive gland. Biomarkers 26(3):248–259

    Article  PubMed  Google Scholar 

  68. Jacobson SV, Reimschuessel R (1998) Modulation of superoxide production in goldfish (Carassius auratus) exposed to and recovering from sublethal copper levels. Fish Shellfish Immunol 8:245–259

    Article  Google Scholar 

  69. Özcan O, Erdal H, Çakırcal G, Yönden Z (2015) Oksidatif stres ve hücre içi lipit, protein ve DNA yapıları üzerine etkileri. J Clin Exp Invest 6(3):331–336

    Google Scholar 

  70. Hao L, Chen L (2012) Oxidative stress responses in different organs of carp (Cyprinus carpio) with exposure to ZnO nanoparticles. Ecotoxicol Environ Saf 80:103–110

    Article  CAS  PubMed  Google Scholar 

  71. Ekinci D, Şentürk M (2013) Assesment of metal inhibition of antioxidant enzyme glutathione reductase from rainbow trout liver. J Enzyme Inhib Med 28(1):11–15. https://doi.org/10.3109/14756366.2011.615745

    Article  CAS  Google Scholar 

  72. Atli G, Guasch H, Rubio-Gracia F, Zamora L, Vila-Gispert A (2020) Antioxidant system status in threatened native fish Barbus meridionalis from the Osor River (Iberian Peninsula): I. Characterization and II. In vitro Zn assays. Environ Toxicol Pharmacol 79 103428

  73. Power A, Sheehan D (1996) Seasonal variation in the antioxidant defence systems of gill and digestive gland of the blue mussel, Mytilus edulis. Comp Biochem Phys C Pharmacol Toxicol Endocrinol 114(2):99–103

    Article  Google Scholar 

  74. Alves SR, Severino PC, Ibbotson DP, da Silva AZ, Lopes FR, Sáenz LA, Bainy AC (2002) Effects of furadan in the brown mussel Perna perna and in the mangrove oyster Crassostrea rhizophorae. Mar Environ Res 54(3–5):241–245

    Article  CAS  PubMed  Google Scholar 

  75. Van der Oost R, Beyer J, Vermeulen N (2003) Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Pharmacol 13:57–149

    Article  PubMed  Google Scholar 

  76. Borković SS, Šaponjić JS, Pavlović SZ, Blagojević DP, Milošević SM, Kovačević TB, Saičić ZS (2005) The activity of antioxidant defence enzymes in the mussel Mytilus galloprovincialis from the Adriatic Sea. Comp Biochem Phys C Pharmacol Toxicol Endocrinol 141(4):366–374

    Article  CAS  Google Scholar 

  77. Valko M, Leibfritz D, Jan Moncol J, Cronin MTD, Mazur M, Tels J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84

    Article  CAS  PubMed  Google Scholar 

  78. Vašková J, Vaško L, Kron I (2012) Oxidative processes and antioxidative metaloenzymes. Chapter 2, Biochemistry, Genetics and Molecular Biology Antioxidant Enzyme, Prof. Mohammed Amr El-Missiry (Ed.) InTech 29

  79. Gornati R, Longo A, Rossi F, Maisano M, Sabatino G, Mauceri A, Fasulo S (2016) Effects of titanium dioxide nanoparticle exposure in Mytilus galloprovincialis gills and digestive gland. Nanotoxicology 10(6):807–817

    Article  CAS  PubMed  Google Scholar 

  80. Moore MN (1990) Lysosomal cytochemistry in marine environmental monitoring. Histochemistry Journal 22:187–191

    Article  CAS  Google Scholar 

  81. Moore MN (2002) Biocomplexity: the post-genome challenge in ecotoxicology. Aquat Toxicol 59:1–15

    Article  CAS  PubMed  Google Scholar 

  82. Moore MN, Allen JI, McVeigh A (2006) Environmental prognostics: an integrated model supporting lysosomal stress responses as predictive biomarkers of animal health status. Mar Environ Res 61:278–304

    Article  CAS  PubMed  Google Scholar 

  83. Lorenzon S, Francese M, Smith VJ, Ferrero EA (2001) Heavy metals affect the circulating haemocyte number in the shrimp Palaemon elegans. Fish Shellfish Immunol 11(6):459–472

    Article  CAS  Google Scholar 

  84. Matozzo V, Marin MG (2010) The role of haemocytes from the crab Carcinus aestuarii (Crustacea, Decapoda) in immune responses: a first survey. Fish Shellfish Immunol 28(4):534–541

    Article  CAS  PubMed  Google Scholar 

  85. Matozzo V, Chinellato A, Munari M, Finos L, Bressan M, Marin MG (2012) First evidence of immunomodulation in bivalves under seawater acidification and increased temperature. PloS one 7 3 e33820

  86. Johnson NG, Burnett LE, Burnett KG (2011) Properties of bacteria that trigger hemocytopenia in the Atlantic blue crab. Callinectes sapidus The Biol Bull 221(2):164–175

    Article  CAS  PubMed  Google Scholar 

  87. Qyli M, Aliko V, Faggio C (2020) Physiological and biochemical responses of Mediterranean green crab, Carcinus aestuarii, to different environmental stressors: evaluation of hemocyte toxicity and its possible effects on immune response. Comp Biochem Phys C Toxicol Pharmacol 231 108739

  88. Taze C, Panetas I, Kalogiannis S, Feidantsis K, Gallios GP, Kastrinaki G, Kaloyianni M (2016) Toxicity assessment and comparison between two types of iron oxide nanoparticles in Mytilus galloprovincialis. Aquat toxicol 172:9–20

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author would like to thank Gelibolu Seafood Company, from which the study material was provided, and the Nanograph Nanotechnology, where nanoparticle and characterization information was provided.

Funding

This study was funded by Çanakkale Onsekiz Mart University Scientific Research Projects Commission (Project No: FHD-2021–3601).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selin Ertürk Gürkan.

Ethics declarations

Ethics Approval

This is an observational study. The COMU Research Ethics Committee has confirmed that no ethical approval is required.

Competing Interests

The author declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gürkan, S.E. Impact of Nickel Oxide Nanoparticles (NiO) on Oxidative Stress Biomarkers and Hemocyte Counts of Mytilus galloprovincialis. Biol Trace Elem Res 200, 3429–3441 (2022). https://doi.org/10.1007/s12011-022-03189-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-022-03189-4

Keywords

Navigation