Skip to main content

Advertisement

Log in

Associations Between Mild Cognitive Impairment and Whole Blood Zinc and Selenium in the Elderly Cohort

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Some studies have shown that an imbalance in trace element homeostasis can lead to cognitive dysfunction, but data are lacking. The purpose of this study was to investigate the association between whole blood zinc (Zn), selenium (Se), copper-zinc ratio (Cu/Zn), copper-selenium ratio (Cu/Se), and zinc-selenium ratio (Zn/Se) and mild cognitive impairment (MCI) in elderly Chinese individuals. The study was based on the Elderly Health and Controlled Environmental Factors Cohort in Lu’an, Anhui Province, China, from June to September 2016. The cognitive function of the elderly was determined by the Mini-Mental State Examination (MMSE) and activities of daily living (ADL) scales. The concentrations of Zn, Cu, and Se in the whole blood were measured by inductively coupled plasma–mass spectrometry (ICP-MS). Binary logistic regression was used to analyze the associations between trace elements and MCI. A total of 1006 participants with an average age of 71.70 years old were included in this study. Compared with healthy people, MCI patients had higher whole blood Zn levels and lower Se levels, and Cu/Zn, Cu/Se, and Zn/Se were also significantly different. Binary logistic regression analysis showed that Zn, Cu/Se, and Zn/Se exposure in the third tertile was associated with an increased risk of MCI, while Se exposure in the third tertile was associated with a reduced risk of MCI. After adjustment for sex, age, marital status, BMI, and living status, whole blood Zn, Se, Cu/Zn, Cu/Se, and Zn/Se were significantly associated with MCI risk, especially in elderly women.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Petersen RC, Roberts RO, Knopman DS, Geda YE, Cha RH et al (2010) Prevalence of mild cognitive impairment is higher in men. The Mayo Clinic Study of Aging. Neurology 75(10):889–897. https://doi.org/10.1212/WNL.0b013e3181f11d85

    Article  CAS  Google Scholar 

  2. Tamano H, Takeda A (2015) Is interaction of amyloid β-peptides with metals involved in cognitive activity? Metallomics 7(8):1205–1212. https://doi.org/10.1039/c5mt00076a

    Article  CAS  Google Scholar 

  3. Anderson KL, Frazier HN, Maimaiti S, Bakshi VV, Majeed ZR et al (2017) Impact of single or repeated dose intranasal zinc-free insulin in young and aged F344 rats on cognition, signaling, and brain metabolism. J Gerontol A Biol Sci Med Sci 72(2):189–197. https://doi.org/10.1093/gerona/glw065

    Article  CAS  Google Scholar 

  4. Baumgart M, Snyder HM, Carrillo MC, Fazio S, Kim H et al (2015) Summary of the evidence on modifiable risk factors for cognitive decline and dementia: a population-based perspective. Alzheimers Dement 11(6):718–726. https://doi.org/10.1016/j.jalz.2015.05.016

    Article  Google Scholar 

  5. Jia L, Du Y, Chu L, Zhang Z, Li F et al (2020) Prevalence, risk factors, and management of dementia and mild cognitive impairment in adults aged 60 years or older in China: a cross-sectional study. Lancet Public Health 5(12):e661–e671. https://doi.org/10.1016/S2468-2667(20)30185-7

    Article  Google Scholar 

  6. Rautiainen S, Manson JE, Lichtenstein AH, Sesso HD (2016) Dietary supplements and disease prevention - a global overview. Nat Rev Endocrinol 12(7):407–420. https://doi.org/10.1038/nrendo.2016.54

    Article  CAS  Google Scholar 

  7. Engelken J, Espadas G, Mancuso FM, Bonet N, Scherr AL et al (2016) Signatures of evolutionary adaptation in quantitative trait loci influencing trace element homeostasis in liver. Mol Biol Evol 33(3):738–754. https://doi.org/10.1093/molbev/msv267

    Article  CAS  Google Scholar 

  8. Ashraf A, Stosnach H, Parkes HG, Hye A, Powell J et al (2019) Pattern of altered plasma elemental phosphorus, calcium, zinc, and iron in Alzheimer’s disease. Sci Rep 9(1):3147. https://doi.org/10.1038/s41598-018-37431-8

    Article  CAS  Google Scholar 

  9. Prasad AS (2014) Zinc: an antioxidant and anti-inflammatory agent: role of zinc in degenerative disorders of aging. J Trace Elem Med Biol 28(4):364–371. https://doi.org/10.1016/j.jtemb.2014.07.019

    Article  CAS  Google Scholar 

  10. Giacconi R, Costarelli L, Piacenza F, Basso A, Rink L et al (2017) Main biomarkers associated with age-related plasma zinc decrease and copper/zinc ratio in healthy elderly from ZincAge study. Eur J Nutr 56(8):2457–2466. https://doi.org/10.1007/s00394-016-1281-2

    Article  CAS  Google Scholar 

  11. Lee SR, Noh SJ, Pronto JR, Jeong YJ, Kim HK et al (2015) The critical roles of zinc: beyond impact on myocardial signaling. Korean J Physiol Pharmacol 19(5):389–399. https://doi.org/10.4196/kjpp.2015.19.5.389

    Article  CAS  Google Scholar 

  12. Caglayan A, Katlan DC, Tuncer ZS, Yüce K (2019) Evaluation of trace elements associated with antioxidant enzymes in blood of primary epithelial ovarian cancer patients. J Trace Elem Med Biol 52:254–262. https://doi.org/10.1016/j.jtemb.2019.01.010

    Article  CAS  Google Scholar 

  13. Balmuș I-M, Strungaru S-A, Ciobica A, Nicoara M-N, Dobrin R et al (2017) Preliminary data on the interaction between some biometals and oxidative stress status in mild cognitive impairment and Alzheimer’s disease patients. Oxid Med Cell Longev 2017:7156928. https://doi.org/10.1155/2017/7156928

    Article  CAS  Google Scholar 

  14. Ortiz GG, Pacheco Moisés FP, Mireles-Ramírez M, Flores-Alvarado LJ, González-Usigli H et al (2017) Oxidative stress: love and hate history in central nervous system. Adv Protein Chem Struct Biol 108:1–31. https://doi.org/10.1016/bs.apcsb.2017.01.003

    Article  CAS  Google Scholar 

  15. Cherbuin N, Walsh E, Baune BT, Anstey KJ (2019) Oxidative stress, inflammation and risk of neurodegeneration in a population sample. Eur J Neurol 26(11):1347–1354. https://doi.org/10.1111/ene.13985

    Article  CAS  Google Scholar 

  16. Squitti R, Ghidoni R, Siotto M, Ventriglia M, Benussi L et al (2014) Value of serum nonceruloplasmin copper for prediction of mild cognitive impairment conversion to Alzheimer disease. Ann Neurol 75(4):574–580. https://doi.org/10.1002/ana.24136

    Article  CAS  Google Scholar 

  17. Wang B, Wang X-P (2019) Does ceruloplasmin defend against neurodegenerative diseases? Curr Neuropharmacol 17(6):539–549. https://doi.org/10.2174/1570159X16666180508113025

    Article  CAS  Google Scholar 

  18. Sun Q, Hackler J, Hilger J, Gluschke H, Muric A et al (2020) Selenium and copper as biomarkers for pulmonary arterial hypertension in systemic sclerosis. Nutrients 12(6):1894. https://doi.org/10.3390/nu12061894

    Article  CAS  Google Scholar 

  19. Simunkova M, Alwasel SH, Alhazza IM, Jomova K, Kollar V et al (2019) Management of oxidative stress and other pathologies in Alzheimer’s disease. Arch Toxicol 93(9):2491–2513. https://doi.org/10.1007/s00204-019-02538-y

    Article  CAS  Google Scholar 

  20. Malavolta M, Giacconi R, Piacenza F, Santarelli L, Cipriano C et al (2010) Plasma copper/zinc ratio: an inflammatory/nutritional biomarker as predictor of all-cause mortality in elderly population. Biogerontology 11(3):309–319. https://doi.org/10.1007/s10522-009-9251-1

    Article  CAS  Google Scholar 

  21. Malavolta M, Piacenza F, Basso A, Giacconi R, Costarelli L et al (2015) Serum copper to zinc ratio: relationship with aging and health status. Mech Ageing Dev 151:93–100. https://doi.org/10.1016/j.mad.2015.01.004

    Article  CAS  Google Scholar 

  22. Zabłocka-Słowińska K, Prescha A, Płaczkowska S, Porębska I, Kosacka M et al (2020) Serum and whole blood Cu and Zn status in predicting mortality in lung cancer patients. Nutrients 13(1):60. https://doi.org/10.3390/nu13010060

    Article  CAS  Google Scholar 

  23. Piacenza F, Giacconi R, Costarelli L, Basso A, Bürkle A et al (2021) Age, sex and BMI influence on copper, zinc and their major serum carrier proteins in a large European population including Nonagenarian Offspring from MARK-AGE study. J Gerontol A Biol Sci Med Sci. https://doi.org/10.1093/gerona/glab134

    Article  Google Scholar 

  24. Mravunac M, Szymlek-Gay EA, Daly RM, Roberts BR, Formica M et al (2019) Greater circulating copper concentrations and copper/zinc ratios are associated with lower psychological distress, but not cognitive performance, in a sample of Australian older adults. Nutrients 11(10):2503. https://doi.org/10.3390/nu11102503

    Article  CAS  Google Scholar 

  25. Trippe RC, Pilon-Smits EAH (2021) Selenium transport and metabolism in plants: phytoremediation and biofortification implications. J Hazard Mater 404(Pt B):124178. https://doi.org/10.1016/j.jhazmat.2020.124178

    Article  CAS  Google Scholar 

  26. Ceko MJ, Hummitzsch K, Hatzirodos N, Bonner WM, Aitken JB et al (2015) X-ray fluorescence imaging and other analyses identify selenium and GPX1 as important in female reproductive function. Metallomics 7(1):71–82. https://doi.org/10.1039/c4mt00228h

    Article  CAS  Google Scholar 

  27. Gordon-Larsen P, Wang H, Popkin BM (2014) Overweight dynamics in Chinese children and adults. Obes Rev 15(Suppl 1):37–48. https://doi.org/10.1111/obr.12121

    Article  Google Scholar 

  28. Honig LS, Vellas B, Woodward M, Boada M, Bullock R et al (2018) Trial of solanezumab for mild dementia due to Alzheimer’s disease. N Engl J Med 378(4):321–330. https://doi.org/10.1056/NEJMoa1705971

    Article  CAS  Google Scholar 

  29. Hoppe S, Rainfray M, Fonck M, Hoppenreys L, Blanc J-F et al (2013) Functional decline in older patients with cancer receiving first-line chemotherapy. J Clin Oncol 31(31):3877–3882. https://doi.org/10.1200/JCO.2012.47.7430

    Article  Google Scholar 

  30. Langa KM, Levine DA (2014) The diagnosis and management of mild cognitive impairment: a clinical review. JAMA 312(23):2551–2561. https://doi.org/10.1001/jama.2014.13806

    Article  CAS  Google Scholar 

  31. Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG et al (1999) Mild cognitive impairment: clinical characterization and outcome. Arch Neurol 56(3):303–308. https://doi.org/10.1001/archneur.56.3.303

    Article  CAS  Google Scholar 

  32. Gu L, Yu J, Fan Y, Wang S, Yang L et al (2021) The association between trace elements exposure and the cognition in the elderly in China. Biol Trace Elem Res 199(2):403–412. https://doi.org/10.1007/s12011-020-02154-3

    Article  CAS  Google Scholar 

  33. Tan J-p, Li N, Gao J, Wang L-n, Zhao Y-m et al (2015) Optimal cutoff scores for dementia and mild cognitive impairment of the Montreal Cognitive Assessment among elderly and oldest-old Chinese population. J Alzheimers Dis 43(4):1403–1412. https://doi.org/10.3233/JAD-141278

    Article  Google Scholar 

  34. Basta M, Simos P, Vgontzas A, Koutentaki E, Tziraki S et al (2019) Associations between sleep duration and cognitive impairment in mild cognitive impairment. J Sleep Res 28(6):e12864. https://doi.org/10.1111/jsr.12864

    Article  Google Scholar 

  35. Yedomon B, Menudier A, Etangs FLD, Anani L, Fayomi B et al (2017) Biomonitoring of 29 trace elements in whole blood from inhabitants of Cotonou (Benin) by ICP-MS. J Trace Elem Med Biol 43:38–45. https://doi.org/10.1016/j.jtemb.2016.11.004

    Article  CAS  Google Scholar 

  36. Luchsinger JA, Palta P, Rippon B, Soto L, Ceballos F et al (2020) Sex differences in in vivo Alzheimer’s disease neuropathology in late middle-aged Hispanics. J Alzheimers Dis 74(4):1243–1252. https://doi.org/10.3233/JAD-191183

    Article  Google Scholar 

  37. Au B, Dale-McGrath S, Tierney MC (2017) Sex differences in the prevalence and incidence of mild cognitive impairment: a meta-analysis. Ageing Res Rev 35:176–199. https://doi.org/10.1016/j.arr.2016.09.005

    Article  Google Scholar 

  38. Tang F, Chi I, Dong X (2019) Sex differences in the prevalence and incidence of cognitive impairment: does immigration matter? J Am Geriatr Soc 67(S3):S513–S518. https://doi.org/10.1111/jgs.15728

    Article  Google Scholar 

  39. Sussman D, Smith LM, Anderson ME, Duniho S, Hunter JH et al (2014) SGN-LIV1A: a novel antibody-drug conjugate targeting LIV-1 for the treatment of metastatic breast cancer. Mol Cancer Ther 13(12):2991–3000. https://doi.org/10.1158/1535-7163.MCT-13-0896

    Article  CAS  Google Scholar 

  40. Bangen KJ, Thomas KR, Weigand AJ, Edmonds EC, Clark AL et al (2021) Elevated plasma neurofilament light predicts a faster rate of cognitive decline over 5 years in participants with objectively-defined subtle cognitive decline and MCI. Alzheimers Dement. https://doi.org/10.1002/alz.12324

    Article  Google Scholar 

  41. An P, Zhou X, Du Y, Zhao J, Song A et al (2019) Association of neutrophil-lymphocyte ratio with mild cognitive impairment in elderly Chinese adults: a case-control study. Curr Alzheimer Res 16(14):1309–1315. https://doi.org/10.2174/1567205017666200103110521

    Article  CAS  Google Scholar 

  42. Negahdar H, Hosseini SR, Parsian H, Kheirkhah F, Mosapour A et al (2015) Homocysteine, trace elements and oxidant/antioxidant status in mild cognitively impaired elderly persons: a cross-sectional study. Rom J Intern Med 53(4):336–342. https://doi.org/10.1515/rjim-2015-0043

    Article  Google Scholar 

  43. Vinceti M, Michalke B, Malagoli C, Eichmüller M, Filippini T et al (2019) Selenium and selenium species in the etiology of Alzheimer’s dementia: the potential for bias of the case-control study design. J Trace Elem Med Biol 53:154–162. https://doi.org/10.1016/j.jtemb.2019.03.002

    Article  CAS  Google Scholar 

  44. Arce-Varas N, Abate G, Prandelli C, Martínez C, Cuetos F et al (2017) Comparison of extracellular and intracellular blood compartments highlights redox alterations in Alzheimer’s and mild cognitive impairment patients. Curr Alzheimer Res 14(1):112–122. https://doi.org/10.2174/1567205013666161010125413

    Article  CAS  Google Scholar 

  45. Li X, Du X, Ni J (2019) Zn aggravates Tau aggregation and neurotoxicity. Int J Mol Sci 20(3):487. https://doi.org/10.3390/ijms20030487

    Article  CAS  Google Scholar 

  46. López N, Tormo C, De Blas I, Llinares I, Alom J (2013) Oxidative stress in Alzheimer’s disease and mild cognitive impairment with high sensitivity and specificity. J Alzheimers Dis 33(3):823–829. https://doi.org/10.3233/JAD-2012-121528

    Article  CAS  Google Scholar 

  47. Wang W, Wang X, Luo J, Chen X, Ma K et al (2021) Serum copper level and the copper-to-zinc ratio could be useful in the prediction of lung cancer and its prognosis: a case-control study in Northeast China. Nutr Cancer 73(10):1908–1915. https://doi.org/10.1080/01635581.2020.1817957

  48. Rivas-García TE, Marcelo-Pons M, Martínez-Arnau F, Serra-Catalá N, Santamaría-Carrillo Y et al (2018) Blood zinc levels and cognitive and functional evaluation in non-demented older patients. Exp Gerontol 108:28–34. https://doi.org/10.1016/j.exger.2018.03.003

    Article  CAS  Google Scholar 

  49. Gong L, Yang Q, Liu C-W-B, Wang X, Zeng H-L (2021) Assessment of 12 essential and toxic elements in whole blood of pregnant and non-pregnant women living in Wuhan of China. Biol Trace Elem Res 199(6):2121–2130. https://doi.org/10.1007/s12011-020-02337-y

    Article  CAS  Google Scholar 

  50. Lee TMC, Sun D, Leung M-K, Chu L-W, Keysers C (2013) Neural activities during affective processing in people with Alzheimer’s disease. Neurobiol Aging 34(3):706–715. https://doi.org/10.1016/j.neurobiolaging.2012.06.018

    Article  Google Scholar 

  51. Wei F, Wang D, Li H, Xia P, Ran Y et al (2020) Toxicogenomics provides insights to toxicity pathways of neonicotinoids to aquatic insect. Chironomus dilutus. Environ Pollut 260:114011. https://doi.org/10.1016/j.envpol.2020.114011

    Article  CAS  Google Scholar 

  52. Szewczyk B (2013) Zinc homeostasis and neurodegenerative disorders. Front Aging Neurosci 5:33. https://doi.org/10.3389/fnagi.2013.00033

    Article  CAS  Google Scholar 

  53. Paglia G, Miedico O, Cristofano A, Vitale M, Angiolillo A et al (2016) Distinctive pattern of serum elements during the progression of Alzheimer’s disease. Sci Rep 6:22769. https://doi.org/10.1038/srep22769

    Article  CAS  Google Scholar 

  54. Vaz FNC, Fermino BL, Haskel MVL, Wouk J, de Freitas GBL et al (2018) The relationship between copper, iron, and selenium levels and Alzheimer disease. Biol Trace Elem Res 181(2):185–191. https://doi.org/10.1007/s12011-017-1042-y

    Article  CAS  Google Scholar 

  55. Pal A, Siotto M, Prasad R, Squitti R (2015) Towards a unified vision of copper involvement in Alzheimer’s disease: a review connecting basic, experimental, and clinical research. J Alzheimers Dis 44(2):343–354. https://doi.org/10.3233/jad-141194

    Article  CAS  Google Scholar 

  56. Solovyev N, Drobyshev E, Bjørklund G, Dubrovskii Y, Lysiuk R et al (2018) Selenium, selenoprotein P, and Alzheimer’s disease: is there a link? Free Radic Biol Med 127:124–133. https://doi.org/10.1016/j.freeradbiomed.2018.02.030

    Article  CAS  Google Scholar 

  57. Rita Cardoso B, Silva Bandeira V, Jacob-Filho W, Franciscato Cozzolino SM (2014) Selenium status in elderly: relation to cognitive decline. J Trace Elem Med Biol 28(4):422–426. https://doi.org/10.1016/j.jtemb.2014.08.009

  58. Yang Y-W, Liou S-H, Hsueh Y-M, Lyu W-S, Liu C-S et al (2018) Risk of Alzheimer’s disease with metal concentrations in whole blood and urine: a case-control study using propensity score matching. Toxicol Appl Pharmacol 356:8–14. https://doi.org/10.1016/j.taap.2018.07.015

    Article  CAS  Google Scholar 

  59. Naderi M, Salahinejad A, Jamwal A, Chivers DP, Niyogi S (2017) Chronic dietary selenomethionine exposure induces oxidative stress, dopaminergic dysfunction, and cognitive impairment in adult zebrafish (Danio rerio). Environ Sci Technol 51(21):12879–12888. https://doi.org/10.1021/acs.est.7b03937

    Article  CAS  Google Scholar 

  60. Naderi M, Salahinejad A, Ferrari MCO, Niyogi S, Chivers DP (2018) Dopaminergic dysregulation and impaired associative learning behavior in zebrafish during chronic dietary exposure to selenium. Environ Pollut 237:174–185. https://doi.org/10.1016/j.envpol.2018.02.033

    Article  CAS  Google Scholar 

  61. Giacconi R, Giuli C, Casoli T, Balietti M, Costarelli L et al (2019) Acetylcholinesterase inhibitors in Alzheimer’s disease influence zinc and copper homeostasis. J Trace Elem Med Biol 55:58–63. https://doi.org/10.1016/j.jtemb.2019.06.001

    Article  CAS  Google Scholar 

  62. Denoyer D, Masaldan S, La Fontaine S, Cater MA (2015) Targeting copper in cancer therapy: “Copper That Cancer.” Metallomics 7(11):1459–1476. https://doi.org/10.1039/c5mt00149h

    Article  CAS  Google Scholar 

  63. Guo CH, Chen PC, Yeh MS, Hsiung DY, Wang CL (2011) Cu/Zn ratios are associated with nutritional status, oxidative stress, inflammation, and immune abnormalities in patients on peritoneal dialysis. Clin Biochem 44(4):275–280. https://doi.org/10.1016/j.clinbiochem.2010.12.017

    Article  CAS  Google Scholar 

  64. Escobedo-Monge MF, Barrado E, Parodi-Román J, Escobedo-Monge MA, Torres-Hinojal MC et al (2021) Copper and copper/Zn ratio in a series of children with chronic diseases: a cross-sectional study. Nutrients 13(10):3578. https://doi.org/10.3390/nu13103578

  65. Socha K, Klimiuk K, Naliwajko SK, Soroczyńska J, Puścion-Jakubik A et al (2021) Dietary habits, selenium, copper, zinc and total antioxidant status in serum in relation to cognitive functions of patients with Alzheimer’s disease. Nutrients 13(2):287. https://doi.org/10.3390/nu13020287

    Article  CAS  Google Scholar 

  66. Nii S, Shinohara K, Matsushita H, Noguchi Y, Watanabe K et al (2016) Hepatic effects of estrogen on plasma distribution of small dense low-density lipoprotein and free radical production in postmenopausal women. J Atheroscler Thromb 23(7):810–818. https://doi.org/10.5551/jat.33175

    Article  CAS  Google Scholar 

  67. Snyder HM, Asthana S, Bain L, Brinton R, Craft S et al (2016) Sex biology contributions to vulnerability to Alzheimer’s disease: a think tank convened by the Women’s Alzheimer’s Research Initiative. Alzheimers Dement 12(11):1186–1196. https://doi.org/10.1016/j.jalz.2016.08.004

    Article  Google Scholar 

  68. Miller KB, Fields JA, Harvey RE, Lahr BD, Bailey KR et al (2020) Aortic hemodynamics and cognitive performance in postmenopausal women: impact of pregnancy history. Am J Hypertens 33(8):756–764. https://doi.org/10.1093/ajh/hpaa081

    Article  Google Scholar 

  69. Xue J, Li J, Liang J, Chen S (2018) The prevalence of mild cognitive impairment in China: a systematic review. Aging Dis 9(4): 706–715. https://doi.org/10.14336/ad.2017.0928

Download references

Acknowledgements

We thank all participants of this study. Special thanks to the following people for their contributions to this paper, who were key members of the cohort study and participated in the survey: School of Public Health, Anhui Medical University: Nannan Yu, Linsheng Yang, Kaiyong Liu, Xiude Li; School of Health Management, Anhui Medical University: Guimei Chen, Dongmei Zhang, Ying Ma, Li Wang; School of Nursing, Anhui Medical University: Annuo Liu; Anhui Provincial Center for Disease Control and Prevention: Yong Fan; Lu’an Center of Disease Control and Prevention: Hongjuan Cao, Kaichun Li.

Funding

Grants for Major Projects on College Leading Talent Team Introduced of Anhui (0303011224) and National Natural Science Foundation of China (81872662).

The study was approved by the Biomedical Ethics Committee of Anhui Medical University. All participants provided written informed consent.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Sheng.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Jinhui Yu and Yu He contributed equally to this work and should be considered co-first authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, J., He, Y., Yu, X. et al. Associations Between Mild Cognitive Impairment and Whole Blood Zinc and Selenium in the Elderly Cohort. Biol Trace Elem Res 201, 51–64 (2023). https://doi.org/10.1007/s12011-022-03136-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-022-03136-3

Keywords

Navigation