Skip to main content
Log in

Ecofriendly Synthesis of Biosynthesized Copper Nanoparticles with Starch-Based Nanocomposite: Antimicrobial, Antioxidant, and Anticancer Activities

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

In recent years, polysaccharides-based nanocomposites have been used for biomedical applications. In the current study, a nanocomposite based on myco-synthesized copper nanoparticles (CuNPs) and starch was prepared. The prepared nanocomposite was fully characterized using UV–visible spectroscopy (UV–vis), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDX), mapping, transmission electron microscope (TEM), and dynamic light scattering (DLS). Results revealed that this nanocomposite is characterized by nano spherical shape ranged around 200 nm as well as doped with CuNPs with size about 9 nm. Antimicrobial, antioxidant, and anticancer activities of the prepared nanocomposite were evaluated. Results revealed that CuNPs-based nanocomposite exhibited outstanding antibacterial and antifungal activity toward Escherichia coli ATCC25922, Bacillus subtilis ATCC605, Candida albicans ATCC90028, Cryptococcus neoformance ATCC 14,116, Aspergillus niger RCMB 02,724, A. terreus RCMB 02,574, and A. fumigatus RCMB 02,568. Moreover, CuNPs-based nanocomposite has a strong antioxidant activity as compared to ascorbic acid, where IC50 was 18 µg/mL. Cytotoxicity test of CuNPs-based nanocomposite revealed that this nanocomposite is safe in use, where IC50 was 185.1 µg/mL. Furthermore, CuNPs-based nanocomposite exhibited potential anticancer activity against MCF7 cancerous cell line where IC50 was 62.8 µg/mL which was better than CuNPs alone. In conclusion, the prepared CuNPs with starch-based nanocomposite is promising for different biomedical applications as antimicrobial, antioxidant, and anticancer activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code Availability

Not applicable.

References

  1. Ranjani S, Adnan M, Ruckmani K, Hemalatha S (2021) Synthesis, characterization and applications of endophytic fungal nanoparticles. Inorg Nano-Met Chem 51(2):280–287

  2. Rabiee N, Bagherzadeh M, Kiani M, Ghadiri AM, Etessamifar F, Jaberizadeh AH, Shakeri A (2020) Biosynthesis of copper oxide nanoparticles with potential biomedical applications. Int J Nanomed 15:3983

    Article  CAS  Google Scholar 

  3. Abu-Elghait M, Hasanin M, Hashem AH, Salem SS (2021) Ecofriendly novel synthesis of tertiary composite based on cellulose and myco-synthesized selenium nanoparticles: characterization, antibiofilm and biocompatibility. Int J of Biol Macromol 175:294–303. https://doi.org/10.1016/j.ijbiomac.2021.02.040

    Article  CAS  Google Scholar 

  4. Elbahnasawy MA, Shehabeldine AM, Khattab AM, Amin BH, Hashem AH (2021) Green biosynthesis of silver nanoparticles using novel endophytic Rothia endophytica: characterization and anticandidal activity. J Drug Deliv Sci Tech:102401

  5. Hassan SE-D, Fouda A, Radwan AA, Salem SS, Barghoth MG, Awad MA, Abdo AM, El-Gamal MS (2019) Endophytic actinomycetes Streptomyces spp mediated biosynthesis of copper oxide nanoparticles as a promising tool for biotechnological applications. JBIC J of Biol Inorg Chem 24(3):377–393

    Article  CAS  Google Scholar 

  6. Fouda A, Salem SS, Wassel AR, Hamza MF, Shaheen TI (2020) Optimization of green biosynthesized visible light active CuO/ZnO nano-photocatalysts for the degradation of organic methylene blue dye. Heliyon 6 (9):e04896

  7. Hashem AH, Abdelaziz AM, Askar AA, Fouda HM, Khalil AMA, Abd-Elsalam KA, Khaleil MM (2021) Bacillus megaterium-mediated synthesis of selenium nanoparticles and their antifungal activity against Rhizoctonia solani in faba bean plants. J Fungi 7(3):195

    Article  CAS  Google Scholar 

  8. Dacrory S, Hashem AH, Hasanin M (2021) Synthesis of cellulose based amino acid functionalized nano-biocomplex: characterization, antifungal activity, molecular docking and hemocompatibility. Environ Nanotechnol Monitor Manage 15:100453. https://doi.org/10.1016/j.enmm.2021.100453

    Article  Google Scholar 

  9. Elfeky AS, Salem SS, Elzaref AS, Owda ME, Eladawy HA, Saeed AM, Awad MA, Abou-Zeid RE, Fouda A (2020) Multifunctional cellulose nanocrystal/metal oxide hybrid, photo-degradation, antibacterial and larvicidal activities. Carbohydrate polymers 230:115711

  10. Zhang X, Yan S, Tyagi R, Surampalli R (2011) Synthesis of nanoparticles by microorganisms and their application in enhancing microbiological reaction rates. Chemosphere 82(4):489–494

    Article  CAS  PubMed  Google Scholar 

  11. Hashem AH, Khalil AMA, Reyad AM, Salem SS (2021) Biomedical applications of mycosynthesized selenium nanoparticles using Penicillium expansum ATTC 36200. Biol Trace Elem Res:1–11

  12. Abdelghany T, Al-Rajhi AM, Al Abboud MA, Alawlaqi M, Magdah AG, Helmy EA, Mabrouk AS (2018) Recent advances in green synthesis of silver nanoparticles and their applications: about future directions. A Rev BioNanoSci 8(1):5–16

    Article  Google Scholar 

  13. Mohamed AA, Abu-Elghait M, Ahmed NE, Salem SS (2020) Eco-friendly mycogenic synthesis of ZnO and CuO nanoparticles for in vitro antibacterial, antibiofilm, and antifungal applications. Biol Trace Elem Res:1–12

  14. Badawy AA, Abdelfattah NA, Salem SS, Awad MF, Fouda A (2021) Efficacy assessment of biosynthesized copper oxide nanoparticles (CuO-NPs) on stored grain insects and their impacts on morphological and physiological traits of wheat (Triticum aestivum L.) plant. Biology 10 (3):233

  15. Hassan SE-D, Salem SS, Fouda A, Awad MA, El-Gamal MS, Abdo AM (2018) New approach for antimicrobial activity and bio-control of various pathogens by biosynthesized copper nanoparticles using endophytic actinomycetes. J Radiat Res App Sci 11(3):262–270

    CAS  Google Scholar 

  16. Hammad EN, Salem SS, Zohair MM, Mohamed AA, El-Dougdoug W (2021) Purpureocillium lilacinum mediated biosynthesis copper oxide nanoparticles with promising removal of dyes.

  17. Gade A, Bonde P, Ingle A, Marcato P, Duran N, Rai M (2008) Exploitation of Aspergillus niger for synthesis of silver nanoparticles. J Biobased Mater Bioenergy 2(3):243–247

    Article  Google Scholar 

  18. Srivastava S, Bhargava A, Pathak N, Srivastava P (2019) Production, characterization and antibacterial activity of silver nanoparticles produced by Fusarium oxysporum and monitoring of protein-ligand interaction through in-silico approaches. Microb pathog 129:136–145

    Article  CAS  PubMed  Google Scholar 

  19. Ren G, Hu D, Cheng EW, Vargas-Reus MA, Reip P, Allaker RP (2009) Characterisation of copper oxide nanoparticles for antimicrobial applications. Int J antimicrob agents 33(6):587–590

    Article  CAS  PubMed  Google Scholar 

  20. Salem SS, Fouda A (2021) Green synthesis of metallic nanoparticles and their prospective biotechnological applications: an overview. Biol trace element Res 199(1):344–370

    Article  CAS  Google Scholar 

  21. Noor S, Shah Z, Javed A, Ali A, Hussain SB, Zafar S, Ali H, Muhammad SA (2020) A fungal based synthesis method for copper nanoparticles with the determination of anticancer, antidiabetic and antibacterial activities. J Microbiol Meth 174:105966

  22. Akturk A, Güler FK, Taygun ME, Goller G, Küçükbayrak S (2020) Synthesis and antifungal activity of soluble starch and sodium alginate capped copper nanoparticles. Mat Res Express 6 (12):1250g1253

  23. Syame SM, Mohamed W, Mahmoud RK, Omara ST (2017) Synthesis of copper-chitosan nanocomposites and their applications in treatment of local pathogenic isolates bacteria. Orient J Chem 33(6):2959–2969

    Article  CAS  Google Scholar 

  24. Bhavyasree PG, Xavier TS (2020) Green synthesis of copper oxide/carbon nanocomposites using the leaf extract of Adhatoda vasica Nees, their characterization and antimicrobial activity. Heliyon 6(2):e03323. https://doi.org/10.1016/j.heliyon.2020.e03323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ahmad H, Venugopal K, Bhat AH, Kavitha K, Ramanan A, Rajagopal K, Srinivasan R, Manikandan E (2020) Enhanced biosynthesis synthesis of copper oxide nanoparticles (CuO-NPs) for their antifungal activity toxicity against major phyto-pathogens of apple orchards. Pharm Res 37(12):246. https://doi.org/10.1007/s11095-020-02966-x

    Article  CAS  PubMed  Google Scholar 

  26. Grommers HE, van der Krogt DA (2009) Chapter 11 - potato starch: production, modifications and uses. In: BeMiller J, Whistler R (eds) Starch (third edition). Academic Press, San Diego, pp 511–539. https://doi.org/10.1016/B978-0-12-746275-2.00011-2

  27. Fouda A, Khalil A, El-Sheikh H, Abdel-Rhaman E, Hashem A (2015) Biodegradation and detoxification of bisphenol-A by filamentous fungi screened from nature. Journal of Advances in Biology & Biotechnology:123–132

  28. Hasanin MS, Hashem AH (2020) Eco-friendly, economic fungal universal medium from watermelon peel waste. Journal of Microbiological Methods 168:105802

  29. Hashem AH, Suleiman WB, Abu-elreesh G, Shehabeldine AM, Khalil AMA (2020) Sustainable lipid production from oleaginous fungus Syncephalastrum racemosum using synthetic and watermelon peel waste media. Bioresour Technol Rep 12:100569. https://doi.org/10.1016/j.biteb.2020.100569

    Article  Google Scholar 

  30. Khalil AMA, Hashem AH (2018) Morphological changes of conidiogenesis in two aspergillus species. J Pure Appl Microbiol 12(4):2041–2048

    Article  CAS  Google Scholar 

  31. Hasanin MS, Hashem AH, Abd El-Sayed ES, El-Saied H (2020) Green ecofriendly bio-deinking of mixed office waste paper using various enzymes from Rhizopus microsporus AH3: efficiency and characteristics. Cellulose:1–11

  32. Hashem AH, Hasanin MS, Khalil AMA, Suleiman WB (2019) Eco-green conversion of watermelon peels to single cell oils using a unique oleaginous fungus: Lichtheimia corymbifera AH13. Waste and Biomass Valorization:1–12

  33. Hashem AH, Suleiman WB, Abu-Elrish GM, El-Sheikh HH (2020) Consolidated bioprocessing of sugarcane bagasse to microbial oil by newly isolated oleaginous fungus: Mortierella wolfii. Arabian Journal for Science and Engineering:1–13

  34. Visagie C, Houbraken J, Frisvad JC, Hong S-B, Klaassen C, Perrone G, Seifert K, Varga J, Yaguchi T, Samson R (2014) Identification and nomenclature of the genus Penicillium. Studies in mycology 78:343–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hashem AH, Saied E, Hasanin MS (2020) Green and ecofriendly bio-removal of methylene blue dye from aqueous solution using biologically activated banana peel waste. Sustain Chem Pharm 18:100333

    Article  Google Scholar 

  36. Standards NCfCL (2002) Reference method for broth dilution antifungal susceptibility testing of yeasts. National Committee for Clinical Laboratory Standards Wayne, PA,

  37. Khalil AMA, Hashem AH, Abdelaziz AM (2019) Occurrence of toxigenic Penicillium polonicum in retail green table olives from the Saudi Arabia market . Biocatal Agric Biotechnol 21:101314

    Article  Google Scholar 

  38. Valgas C, Souza SMD, Smânia E, Smânia A (2007) Screening methods to determine antibacterial activity of natural products. Braz J Microbiols 38:369–380

    Article  Google Scholar 

  39. Khalil A, Abdelaziz A, Khaleil M, Hashem A (2021) Fungal endophytes from leaves of Avicennia marina growing in semi-arid environment as a promising source for bioactive compounds. Lett App Microbiol 72(3):263–274

    Article  CAS  Google Scholar 

  40. Van de Loosdrecht A, Beelen R, Ossenkoppele G, Broekhoven M, Langenhuijsen M (1994) A tetrazolium-based colorimetric MTT assay to quantitate human monocyte mediated cytotoxicity against leukemic cells from cell lines and patients with acute myeloid leukemia. J Immunol Methods 174(1–2):311–320

    Article  PubMed  Google Scholar 

  41. Gunyar OA, Uztan AH (2021) Environmental mycobiotechnology in special reference to fungal bioremediation. Nanotechnology Applications in Health and Environmental Sciences:361–383

  42. Consolo VF, Torres-Nicolini A, Alvarez VA (2020) Mycosinthetized Ag, CuO and ZnO nanoparticles from a promising Trichoderma harzianum strain and their antifungal potential against important phytopathogens. Sci Rep 10(1):1–9

    Article  Google Scholar 

  43. Ramyadevi J, Jeyasubramanian K, Marikani A, Rajakumar G, Rahuman AA, Santhoshkumar T, Kirthi AV, Jayaseelan C, Marimuthu SJPR (2011) Copper nanoparticles synthesized by polyol process used to control hematophagous parasites. Parasitol Res 109(5):1403–1415

    Article  PubMed  Google Scholar 

  44. Sierra-Ávila R, Pérez-Alvarez M, Cadenas-Pliego G, Comparán Padilla V, Ávila-Orta C, Pérez Camacho O, Jiménez-Regalado E, Hernández-Hernández E, Jiménez-Barrera RMJJoN (2015) Synthesis of copper nanoparticles using mixture of allylamine and polyallylamine. 2015

  45. Kou J, Saha A, Bennett-Stamper C, Varma RSJCC (2012) Inside-out core–shell architecture: controllable fabrication of Cu2O@Cu with high activity for the Sonogashira coupling reaction. 48 (47):5862-5864

  46. Salavati-Niasari M, Davar FJML (2009) Synthesis of copper and copper (I) oxide nanoparticles by thermal decomposition of a new precursor. Mater Lett 63(3–4):441–443

    Article  CAS  Google Scholar 

  47. Phiwdang K, Phensaijai M, Pecharapa W (2013) Study of antifungal activities of CuO/ZnO nanocomposites synthesized by co-precipitation method. Advanced materials research. Trans Tech Publ, pp 89–93

  48. Čech Barabaszová K, Holešová S, Bílý M, Hundáková M (2020) CuO and CuO/vermiculite based nanoparticles in antibacterial PVAc nanocomposites. J Inorg Organomet Polym Mater 30(10):4218–4227. https://doi.org/10.1007/s10904-020-01573-y

    Article  CAS  Google Scholar 

  49. Subashini K, Prakash S, Sujatha V (2020) Polymer nanocomposite prepared using copper oxide nanoparticles derived from Sterculia foetida leaf extract with biological applications. Mater Res Exp 7(11):115308

    Article  CAS  Google Scholar 

  50. Villanueva ME, Diez AMADR, González JA, Pérez CJ, Orrego M, Piehl L, Teves S, Copello GJ (2016) Antimicrobial activity of starch hydrogel incorporated with copper nanoparticles. ACS App Mater Int 8(25):16280–16288

    Article  CAS  Google Scholar 

  51. Valgimigli L, Baschieri A, Amorati R (2018) Antioxidant activity of nanomaterials. J Mater Chem B 6(14):2036–2051

    Article  CAS  PubMed  Google Scholar 

  52. Phaniendra A, Jestadi DB, Periyasamy L (2015) Free radicals: properties, sources, targets, and their implication in various diseases. Indian J Clin Biochem 30(1):11–26

    Article  CAS  PubMed  Google Scholar 

  53. Li Y, Li X, Wong Y-S, Chen T, Zhang H, Liu C, Zheng W (2011) The reversal of cisplatin-induced nephrotoxicity by selenium nanoparticles functionalized with 11-mercapto-1-undecanol by inhibition of ROS-mediated apoptosis. Biomater 32(34):9068–9076. https://doi.org/10.1016/j.biomaterials.2011.08.001

    Article  CAS  Google Scholar 

  54. Tinggi U (2008) Selenium: its role as antioxidant in human health. Environ Health Prev Med 13(2):102–108. https://doi.org/10.1007/s12199-007-0019-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kumar B, Smita K, Cumbal L, Debut A, Angulo Y (2017) Biofabrication of copper oxide nanoparticles using Andean blackberry (Rubus glaucus Benth.) fruit and leaf. J Saudi Chem Society 21:S475–S480. https://doi.org/10.1016/j.jscs.2015.01.009

    Article  CAS  Google Scholar 

  56. Muthuvel A, Jothibas M, Manoharan C (2020) Synthesis of copper oxide nanoparticles by chemical and biogenic methods: photocatalytic degradation and in vitro antioxidant activity. Nanotechnol Environ Eng 5(2):14. https://doi.org/10.1007/s41204-020-00078-w

    Article  CAS  Google Scholar 

  57. Ioset J-R, Brun R, Wenzler T, Kaiser M, Yardley V (2009) Drug Screening for kinetoplastids diseases. A training manual for screening in neglected diseases

  58. Ghosh R, Goswami U, Ghosh SS, Paul A, Chattopadhyay A (2015) Synergistic anticancer activity of fluorescent copper nanoclusters and cisplatin delivered through a hydrogel nanocarrier. ACS App Mater Int 7(1):209–222

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge National Research Centre and Faculty of Science, Al-Azhar University, Cairo, Egypt.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: M.H., A.H.H.; methodology: M.H., M.A.A., M.M.A., T.M.A., A.H.H.; formal analysis and investigation: M.H., M.A.A., M.M.A., T.M.A., A.H.H.; writing—original draft preparation: M.H., A.H.H.; writing—review and editing: M.H., T.M.A., A.H.H.; resources: M.H., M.A.A., M.M.A., T.M.A., A.H.H.

Corresponding author

Correspondence to Amr H. Hashem.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasanin, M., Al Abboud, M.A., Alawlaqi, M.M. et al. Ecofriendly Synthesis of Biosynthesized Copper Nanoparticles with Starch-Based Nanocomposite: Antimicrobial, Antioxidant, and Anticancer Activities. Biol Trace Elem Res 200, 2099–2112 (2022). https://doi.org/10.1007/s12011-021-02812-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-021-02812-0

Keywords

Navigation