Skip to main content
Log in

Different Sources of Dietary Magnesium Supplementation Reduces Oxidative Stress by Regulation Nrf2 and NF-κB Signaling Pathways in High-Fat Diet Rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Magnesium (Mg) is an essential mineral required for many physiological processes, including ionic balances in ocular tissues. We compared the effects of different Mg-chelates (Mg oxide, MgO vs. Mg picolinate, MgPic) on retinal function in a high-fat diet (HFD) rats. Forty-two rats were divided into six groups and treated orally for 8 weeks as follows: Control, MgO, MgPic, HFD, HFD + MgO, and HFD + MgPic. Mg was administered at 500 mg of elemental Mg/kg of diet. HFD intake increased the levels of retinal MDA and NF-κB, INOS, ICAM, and VEGF but downregulated Nrf2. However, in rats supplemented with MgO and MgPic, the retinal MDA level was decreased, compared with the control and HFD rats. Activities of antioxidant enzymes (SOD, CAT, and GPx) were increased in HFD animals given Mg-chelates (p < 0.001), MgPic being the most effective. Mg supplementation significantly decreased the expression levels of NF-κB, INOS, ICAM, and VEGF in HFD rats while increasing the level of Nrf2 (p < 0.001). Mg supplementation significantly decreased the levels of NF-κB, INOS, ICAM, and VEGF and increased Nrf2 level in HFD rats (p < 0.001), with stronger effects seen from MgPic. Mg attenuated retinal oxidative stress and neuronal inflammation and could be considered as an effective treatment for ocular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Panchal SK, Wong W-Y, Kauter K, Ward LC, Brownet L (2012) Caffeine attenuates metabolic syndrome in diet-induced obese rats. Nutrition 28(10):1055–1062. https://doi.org/10.1016/j.nut.2012.02.013

    Article  CAS  PubMed  Google Scholar 

  2. Buettner R, Schölmerich J, Bollheimer LC (2007) High-fat diets: modeling the metabolic disorders of human obesity in rodents. Obesity 5(4):798–808. https://doi.org/10.1038/oby.2007.608

    Article  Google Scholar 

  3. Chang RC-A, Shi L, Huang CC-Y, Kim AJ, Ko ML, Zhou B, Ko GY-P (2015) High-fat diet-induced retinal dysfunction. Invest Ophthalmol Vis Sci 56(4):2367–2380. https://doi.org/10.1167/iovs.14-16143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ola MS, Nawaz MI, Siddiquei MM, Al-Amro S, El-Asrar SMA (2012) Recent advances in understanding the biochemical and molecular mechanism of diabetic retinopathy. J Diabetes Complicat 26(1):56–64. https://doi.org/10.1016/j.jdiacomp.2011.11.004

    Article  Google Scholar 

  5. Alzoubi KH, Hasan ZA, Khabour OF, Mayyas FA, Yacoub ONA, Banihani SA, Azab MA, Alrabadi N (2018) The effect of high-fat diet on seizure threshold in rats: role of oxidative stress. Brain Behav 196:1–7. https://doi.org/10.1016/j.physbeh.2018.08.011

    Article  CAS  Google Scholar 

  6. Lowney P, Hannon TS, Baron AD (1995) Magnesium deficiency enhances basal glucose disposal in the rat. Am J Physiol Endocrinol Metab 268(5):E925–EE31. https://doi.org/10.1152/ajpendo.1995.268.5.E925

    Article  CAS  Google Scholar 

  7. Yin X, Wu Orr M, Wang H, Hobbs EC, Shabalina SA, Storz G (2019) The small protein MgtS and small RNA MgrR modulate the PitA phosphate symporter to boost intracellular magnesium levels. Mol Microbiol 111(1):131–144. https://doi.org/10.1111/mmi.14143

    Article  CAS  PubMed  Google Scholar 

  8. Romani AM (2018) Beneficial role of Mg2+ in prevention and treatment of hypertension. Int J Hypertens 2018(12):1–7. https://doi.org/10.1155/2018/9013721

    Article  CAS  Google Scholar 

  9. Schulze MB, Schulz M, Heidemann C, Schienkiewitz A, Hoffmann K, Boeing H (2007) Fiber and magnesium intake and incidence of type 2 diabetes: a prospective study and meta-analysis. Arch Intern Med 167(9):956–965. https://doi.org/10.1001/archinte.167.9.956

    Article  CAS  PubMed  Google Scholar 

  10. Guerrero-Romero F, Flores-García A, Saldaña-Guerrero S, Simental-Mendía LE, Rodríguez-Morán M (2016) Obesity and hypomagnesemia. Eur J Intern Med 34:29–33. https://doi.org/10.1016/j.ejim.2016.06.015

    Article  CAS  PubMed  Google Scholar 

  11. Agarwal R, Iezhitsa L, Agarwal P (2014) Pathogenetic role of magnesium deficiency in ophthalmic diseases. Biometals 27(1):5–18. https://doi.org/10.1007/s10534-013-9684-5

    Article  CAS  Google Scholar 

  12. Alberty RA (1968) Effect of pH and metal ion concentration on the equilibrium hydrolysis of adenosine triphosphate to adenosine diphosphate. J Biol Chem 243(7):1337–1343

    Article  CAS  Google Scholar 

  13. George GA, Heaton FW (1975) Changes in cellular composition during magnesium deficiency. Biochem J 152(3):609–615

    Article  CAS  Google Scholar 

  14. Agarwal R, Iezhitsa IN, Agarwal P, Spasov AA (2013) Mechanisms of cataractogenesis in the presence of magnesium deficiency. Magnes Res 26(1):2–8. https://doi.org/10.1684/mrh.2013.0336

    Article  CAS  PubMed  Google Scholar 

  15. Choi DW (1987) Ionic dependence of glutamate neurotoxicity. J Neurosci 7(2):369–379. https://doi.org/10.1523/JNEUROSCI.07-02-00369.1987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Carafoli E (2005) Calcium–a universal carrier of biological signals: delivered on 3 July 2003 at the Special FEBS Meeting in Brussels. FEBS J 272(5):1073–1089. https://doi.org/10.1111/j.1742-4658.2005.04546.x

    Article  CAS  PubMed  Google Scholar 

  17. Mark LP, Prost RW, Ulmer JL, Smith MM, Daniels DL, Strottmann JM, Brown WD, Hacein-Bey L (2001) Pictorial review of glutamate excitotoxicity: fundamental concepts for neuroimaging. AJNR Am J Neuroradiol 22(10):1813–1824

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Anderson RE, Rapp LM, Wiegand RD (1984) Lipid peroxidation and retinal degeneration. Curr Eye Res 3(1):223–227. https://doi.org/10.3109/02713688408997203

    Article  CAS  PubMed  Google Scholar 

  19. Kowluru RA, Tang J, Kern TS (2001) Abnormalities of retinal metabolism in diabetes and experimental galactosemia: VII. Effect of long-term administration of antioxidants on the development of retinopathy. Diabetes 50(8):1938–1942. https://doi.org/10.2337/diabetes.50.8.1938

    Article  CAS  PubMed  Google Scholar 

  20. Lenardo MJ, Baltimore D (1989) NF-κB: a pleiotropic mediator of inducible and tissue-specific gene control. Cell 58(2):227–229. https://doi.org/10.1016/0092-8674(89)90833-7

    Article  CAS  PubMed  Google Scholar 

  21. Hammes H-P, Hoerauf H, Alt A, Schleicher E, Clausen JT, Bretzel RG, Laqua H (1999) Nε (carboxymethyl) lysin and the AGE receptor RAGE colocalize in age-related macular degeneration. Invest Ophthalmol Vis Sci 40(8):1855–1859

    CAS  PubMed  Google Scholar 

  22. Barnes PJ, Karin M (1997) Nuclear factor-κB—a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med 336(15):1066–1071. https://doi.org/10.1056/NEJM199704103361506

    Article  CAS  PubMed  Google Scholar 

  23. Kowluru RA, Koppolu P, Chakrabarti S, Chen S (2003) Diabetes-induced activation of nuclear transcriptional factor in the retina, and its inhibition by antioxidants. Free Radic Res 37(11):1169–1180. https://doi.org/10.1080/10715760310001604189

    Article  CAS  PubMed  Google Scholar 

  24. Aiello LP, Wong J-S (2000) Role of vascular endothelial growth factor in diabetic vascular complications. Kidney Int Suppl 58:S113–S1S9. https://doi.org/10.1046/j.1523-1755.2000.07718.x

    Article  Google Scholar 

  25. Sin BH, Song BJ, Park SP (2013) Aqueous vascular endothelial growth factor and endothelin-1 levels in branch retinal vein occlusion associated with normal tension glaucoma. J Glaucoma 22(2):104–109. https://doi.org/10.1097/IJG.0b013e3182312047

    Article  PubMed  Google Scholar 

  26. Mozaffarieh M, Flammer J (2007) Is there more to glaucoma treatment than lowering IOP? Surv Ophthalmol 52(6):S174–S1S9. https://doi.org/10.1016/j.survophthal.2007.08.013

    Article  PubMed  Google Scholar 

  27. Arfuzir NNN, Agarwal R, Iezhitsa I, Agarwal P, Sidek S, Spasov A, Ozerov A, Ismail NM (2018) Effect of magnesium acetyltaurate and taurine on endothelin1-ınduced retinal nitrosative stress in rats. Curr Eye Res 43(8):1032–1040. https://doi.org/10.1080/02713683.2018.1467933

    Article  CAS  Google Scholar 

  28. Jafri AJA, Agarwal R, Iezhitsa I, Agarwal P, Spasov A, Ozerov A, Ismail NM (2018) Protective effect of magnesium acetyltaurate and taurine against NMDA-induced retinal damage involves reduced nitrosative stress. Mol Vis 24:495–508

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Lambuk L, Jafri AJA, Arfuzir NNN, Iezhitsa I, Agarwal R, Rozali KNB, Agarwal P, Bakar NS, Kutty MK, Yusof APM, Krasilnikova A, Spasov A, Ozerov A, Ismail NM (2017) Neuroprotective effect of magnesium acetyltaurate against NMDA-induced excitotoxicity in rat retina. Neurotox Res 31(1):31–45. https://doi.org/10.1007/s12640-016-9658-9

    Article  CAS  PubMed  Google Scholar 

  30. Aydin B, Önol M, Hondur A, Kaya MG, Ozdemir H, Cengel A, Hasanreisoglu B (2010) The effect of oral magnesium therapy on visual field and ocular blood flow in normotensive glaucoma. Eur J Ophthalmol 20(1):131–135. https://doi.org/10.1177/112067211002000118

    Article  PubMed  Google Scholar 

  31. Ekici F, Korkmaz S, Karaca EE, Sül S, Tufan HA, Aydın B, Dileköz E (2014) The role of magnesium in the pathogenesis and treatment of glaucoma. Int Sch Res Notices 2014:745439–745437. https://doi.org/10.1155/2014/745439

    Article  PubMed  PubMed Central  Google Scholar 

  32. Mühlbauer B, Schwenk M, Coram WM, Antonin KH, Etienne P, Bieck PR, Douglas FL (1991) Magnesium-L-aspartate-HCl and magnesium-oxide: bioavailability in healthy volunteers. Eur J Clin Pharmacol 40:437–438. https://doi.org/10.1007/BF00265863

    Article  PubMed  Google Scholar 

  33. Lindberg JS, Zobitz MM, Poindexter JR, Pak CY (1990) Magnesium bioavailability from magnesium citrate and magnesium oxide. J Am Coll Nutr 9:48–55. https://doi.org/10.1080/07315724.1990.10720349

    Article  CAS  PubMed  Google Scholar 

  34. European Economic Community (2010) Council Directive 2010/63/EU of 22 September 2010 on the approximation of laws, regulations and administrative provisions of the Member States regarding the protection of animals used for experimental and other scientific purposes. In: Croatian (eds), Chap 15. Eur J Animals Res 28:82–128

    Google Scholar 

  35. Bertinato J, Plouffe LJ, Lavergne C, Ly C (2014) Bioavailability of magnesium from inorganic and organic compounds is similar in rats fed a high phytic acid diet. Magnes Res 27(4):175–185. https://doi.org/10.1684/mrh.2014.0374

    Article  CAS  PubMed  Google Scholar 

  36. Feng Y, Wang R, Xu J, Sun J, Xu T, Gu Q, Wu X (2013) Hydrogen-rich saline prevents early neurovascular dysfunction resulting from inhibition of oxidative stress in STZ-diabetic rats. Curr Eye Res 38(3):396–404. https://doi.org/10.3109/02713683.2012.748919

    Article  CAS  PubMed  Google Scholar 

  37. Orhan C, Akdemir F, Tuzcu M, Sahin N, Yilmaz I, Deshpande J, Juturu V, Sahin K (2016) Mesozeaxanthin Protects Retina from Oxidative Stress in a Rat Model. J Ocul Pharmacol Ther 32(9):631–637. https://doi.org/10.1089/jop.2015.0154

    Article  CAS  PubMed  Google Scholar 

  38. Sahin K, Orhan C, Tuzcu M, Sahin N, Tastan H, Özercan İH, Güler O, Kahraman N, Kucuk O, Ozpolat B (2018) Chemopreventive and antitumor efficacy of curcumin in a spontaneously developing hen ovarian cancer model.Cancer. Prev Res (Phila) 11(1):59–67. https://doi.org/10.1158/1940-6207.CAPR-16-0289

    Article  CAS  Google Scholar 

  39. Castellanos-Gutiérrez A, Sánchez-Pimienta TG, Carriquiry A, da Costa THM, Ariza AC (2018) Higher dietary magnesium intake is associated with lower body mass index, waist circumference and serum glucose in Mexican adults. Nutr J 17(1):114. https://doi.org/10.1186/s12937-018-0422-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jeong JW, Lee B, Kim DH, Jeong HO, Moon KM, Kim MJ, Yokozawa T, Chung HY (2018) Mechanism of action of magnesium lithospermate B against aging and obesity-induced ER stress, insulin resistance, and inflammsome formation in the liver. Molecules 23(9):2098. https://doi.org/10.3390/molecules23092098

    Article  CAS  PubMed Central  Google Scholar 

  41. Dai W, Dierschke SK, Toro AL, Dennis MD (2018) Consumption of a high fat diet promotes protein O-GlcNAcylation in mouse retina via NR4A1-dependent GFAT2 expression. Biochim Biophys Acta Mol basis Dis 1864(12):3568–3576. https://doi.org/10.1016/j.bbadis.2018.09.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Demir T, Ulas F, Ozercan I, Ilhan N, Celiker N, Yasar MA (2003) Protective effects of pentoxifylline in retinal ischemia/reperfusion injury. Ophthalmologica 217(5):337–341. https://doi.org/10.1159/000071348

    Article  CAS  PubMed  Google Scholar 

  43. Hangai M, Yoshimura N, Hiroi K, Mandai M, Honda Y (1996) Inducible nitric oxide synthase in retinal ischemia-reperfusion injury. Exp Eye Res 63(5):501–509. https://doi.org/10.1006/exer.1996.0140

    Article  CAS  PubMed  Google Scholar 

  44. Lu M, Perez VL, Ma N, Miyamoto K, Peng HB, Liao JK, Adamis AP (1999) VEGF increases retinal vascular ICAM-1 expression in vivo. Invest Ophthalmol Vis Sci 40(8):1808–1812

    CAS  PubMed  Google Scholar 

  45. Liu G-H, Qu J, Shen X (2008) NF-κB/p65 antagonizes Nrf2-ARE pathway by depriving CBP from Nrf2 and facilitating recruitment of HDAC3 to MafK. Biochim Biophys Acta 1783(5):713–727. https://doi.org/10.1016/j.bbamcr.2008.01.002

    Article  CAS  PubMed  Google Scholar 

  46. Yavuz Y, Mollaoglu H, Yurumez Y, Ucok K, Duran L, Tünay K, Akgun L (2013) Therapeutic effect of magnesium sulphate on carbon monoxide toxicity-mediated brain lipid peroxidation. Eur Rev Med Pharmacol Sci 17(Suppl 1):28–33

    PubMed  Google Scholar 

  47. Qu J, Ren X, Hou RY, Dai XP, Zhao YC, Xu XJ, Zhang W, Zhou G, Zhou HH, Liu ZQ (2011) The protective effect of magnesium lithospermate B against glucose-induced intracellular oxidative damage. Biochem Biophys Res Commun 411(1):32–39. https://doi.org/10.1016/j.bbrc.2011.06.071

    Article  CAS  PubMed  Google Scholar 

  48. Jiang W, Guo H, Su D, Xu H, Gu H, Hao K (2019) Ameliorative effect of magnesium Isoglycyrrhizinate on hepatic encephalopathy by Epirubicin. Int Immunopharmacol 75:105774. https://doi.org/10.1016/j.intimp.2019.105774

    Article  CAS  PubMed  Google Scholar 

  49. Gao F, J-m L, Xi C, Li H, Liu Y, Wang Y, Xuan L (2019) Magnesium lithospermate B protects the endothelium from inflammation-induced dysfunction through activation of Nrf2 pathway. Acta Pharmacol Sin 40(7):867–878. https://doi.org/10.1038/s41401-018-0189-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Xie C, Li X, Zhu J, Wu J, Geng S, Zhong C (2019) Magnesium isoglycyrrhizinate suppresses LPS-induced inflammation and oxidative stress through inhibiting NF-κB and MAPK pathways in RAW264.7 cells. Bioorg Med Chem 27(3):516–524. https://doi.org/10.1016/j.bmc.2018.12.033

    Article  CAS  PubMed  Google Scholar 

  51. Ola MS, Alhomida AS, LaNoue KF (2019) Gabapentin attenuates oxidative stress and apoptosis in the diabetic rat retina. Neurotox Res 36(1):81–90. https://doi.org/10.1007/s12640-019-00018-w

    Article  CAS  PubMed  Google Scholar 

  52. Chen KH, Hsiang EL, Hsu MY, Chou Y, Lin T, Chang Y, Tsai C, Li T, Woung L, Chen S, Peng C, Hwang D (2019) Elevation of serum oxidative stress in patients with retina vein occlusions. Acta Ophthalmol 97(2):e290–e2e5. https://doi.org/10.1111/aos.13892

    Article  CAS  PubMed  Google Scholar 

  53. Antonetti DA, Barber AJ, Khin S, Lieth E, Tarbell JM, Gardner TW (1998) Vascular permeability in experimental diabetes is associated with reduced endothelial occludin content: vascular endothelial growth factor decreases occludin in retinal endothelial cells. Penn State Retina Res Group Diabet 47(12):1953–1959. https://doi.org/10.2337/diabetes.47.12.1953

    Article  CAS  Google Scholar 

  54. Joussen AM, Poulaki V, Qin W, Kirchhof B, Mitsiades N, Wiegand SJ, Rudge J, Yancopoulos GD, Adamis AP (2002) Retinal vascular endothelial growth factor induces intercellular adhesion molecule-1 and endothelial nitric oxide synthase expression and initiates early diabetic retinal leukocyte adhesion in vivo. Am J Pathol 160(2):501–509. https://doi.org/10.1016/S0002-9440(10)64869-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gaspar AZ, Gasser P, Flammer J (1995) The influence of magnesium on visual field and peripheral vasospasm in glaucoma. Ophthalmologica 209(1):11–13. https://doi.org/10.1159/000310566

    Article  CAS  PubMed  Google Scholar 

  56. Belfort MA (1992) The effect of magnesium sulphate on blood flow velocity in the maternal retina in mild pre-eclampsia: a preliminary colour flow Doppler study. Br J Obstet Gynaecol 99(8):641–645. https://doi.org/10.1111/j.1471-0528.1992.tb13846.x

    Article  CAS  PubMed  Google Scholar 

  57. Berthon N, Laurant P, Hayoz D, Fellmann D, Brunner HR, Berthelot A (2002) Magnesium supplementation and deoxycorticosterone acetate salt hypertension: effect on arterial mechanical properties and on activity of endothelin-1. Can J Physiol Pharmacol 80(6):553–561. https://doi.org/10.1139/y02-082

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Nutrition 21, LLC (Purchase, NY, USA) and the Turkish Academy of Science (KS) for partially supporting this project.

Funding

This research was funded by Nutrition 21, LLC (Purchase, NY, USA) and the Turkish Academy of Sciences (in part; KS)

Author information

Authors and Affiliations

Authors

Contributions

(1) KS is involved in the conception and design; CO and BE performed the experiments; CO and BE is involved in analysis and interpretation of the data; CO, AAB, and PBDD performed statistical analyses; CO, AAB, PBDD, and SPO drafted the manuscript; KS and JRK wrote and revised the paper. All the authors read and approved the final version of the manuscript. All authors agree to be accountable for all aspects of the work.

(2) All authors confirm that our figures/tables are original and have not been published previously.

Corresponding author

Correspondence to Kazim Sahin.

Ethics declarations

The study was approved by the Institutional Animal Ethics Committee (156-2017/86) and performed following the internationally accepted standard ethical guidelines for laboratory animal use and care as described in the European Community guidelines, EEC Directive 2010/63/EU, of the 22 September 2010

Conflict of Interest

SPO and JRK is an employee of Nutrition 21, LLC, (Purchase, NY, USA). Other authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orhan, C., Er, B., Deeh, P.B.D. et al. Different Sources of Dietary Magnesium Supplementation Reduces Oxidative Stress by Regulation Nrf2 and NF-κB Signaling Pathways in High-Fat Diet Rats. Biol Trace Elem Res 199, 4162–4170 (2021). https://doi.org/10.1007/s12011-020-02526-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02526-9

Keywords

Navigation