Skip to main content
Log in

Evaluation of Cadmium Chloride-Induced Toxicity in Chicks Via Hematological, Biochemical Parameters, and Cadmium Level in Tissues

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Cadmium is a heavy metal and a non-biodegradable environmental contaminant, and its omnipresence ensures its recurrent exposure to humans and animals. Its intake by chicks leads to fatal implications. Cadmium chloride (CdCl2) because of its bio-accumulative nature is an emerging threat to the poultry industry as well as to the humans which consumes these cadmium-intoxicated chickens. In the current study, the target was to elucidate the toxic effects of CdCl2on body weight, hematological, and biochemical parameters as well as its bioaccumulation in different organs of broiler chicks. Various concentrations of CdCl2 (0, 12, 24, 38, and 48 mg/kg body weight) were administered orally to five groups (A, B, C, D, and E) of broiler chicks, respectively. The biometric screening of the exposed birds was carried out by hematological parameters such as packed cell volume (PCV), total erythrocyte count (TEC), mean corpuscular hemoglobin concentration (MCHC), total protein, white blood cells (WBC), and hemoglobin (Hb), as well as biochemical parameters superoxide dismutase (SOD), low-density lipoprotein (LDL), glutathione peroxidase (GPx), and high-density lipoprotein (HDL) with commercially available kits. Metal accumulation in different organs was detected using atomic absorption spectrophotometer. The compound exposure produced a varied impact on broiler birds. Hematological parameters showed a significant decrease except for WBC. Biochemical parameters also decreased significantly in a dose-dependent manner. However, it was revealed that the body weight of chickens was not affected considerably after CdCl2 exposure. A direct relationship was detected between the accumulation of metal within tissues (lungs, heart, and flesh) and exposure frequency. It can be deduced that an increase in Cd deposition in tissues may lead to an alteration in hematological-biochemical markers which may significantly contribute to systemic toxicity in broilers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Chatta A, Khan M, Mirza Z, Ali A (2016) Heavy metal (cadmium, lead, and chromium) contamination infarmed fish: a potential risk for consumers' health. Turk J Zoo 40(2):248–256

    CAS  Google Scholar 

  2. Jarup L, Akesson A (2009) Current status of cadmium as an environmental health problem. Toxicol Appl Pharmacol 238(3):201–208

    PubMed  Google Scholar 

  3. Obianime AW, Aprioku JS, Ahiwe NJ (2011) Biochemical and hormonal effects of cadmium in female Guinea pigs. J Toxicol Environ Health Sci 3(2):39–43

    CAS  Google Scholar 

  4. Manzoor M, Khan AH, Ullah R, Khan MZ, Ahmad I (2016) Environmental epidemiology of cancer in South Asian population: risk assessment against exposure to polycyclic aromatic hydrocarbons and volatile organic compounds. Arab J Sci Eng 41(6):2031–2043

    CAS  Google Scholar 

  5. Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN (2014) Toxicity mechanism and health effects of some heavy metals. Interdiscip Toxicol 7(2):60–72

    PubMed  PubMed Central  Google Scholar 

  6. Zeng M, Xiao F, Zhong X, Jin F, Guan L, Wang A, Liu X, Zhong C (2013) Reactive oxygen species play a central role in hexavalent chromium-induced apoptosis in Hep3B cells without the functional roles of p53 and caspase-3. Cell Physiol Biochem 32(2):279–290

    CAS  PubMed  Google Scholar 

  7. Huang X, Feng Y, Fan W, Duan J, Duan Y, Xiong G, Wang K, Deng Y, Geng Y, Ouyang P, Chen D (2019) Potential ability for metallothionein and vitamin E protection against cadmium immunotoxicity in head kidney and spleen of grass carp (Ctenopharyngodon idellus). Ecotoxicol Environ Saf 15(170):246–252

    Google Scholar 

  8. Torabifard M, Arjmandi R, Rashidi AM, Nouri J, Mohammadfam I (2017) Ecological and environmental risk assessment in the nanomaterials production. Appl Ecol Environ Res 15(4):1071–1082

    Google Scholar 

  9. Norkhadijah, SSI N, Abidin EZ, Dora EJ (2015) Association between living near to a non-sanitary landfill, fingernail cadmium level and health symptoms among children in. Nilai Int J Public Health Clin Sci 2(3):105–121

    Google Scholar 

  10. El Shater AE, Ali RA (2019) Effect of selenium and bee pollen against immunotoxicity and hepatotoxicity induced by cadmium in male albino rats. Egypt Acad J Biol Sci 11(2):1–9

    Google Scholar 

  11. Ge J, Zhang C, Sun YC, Zhang Q, Lv MW, Guo K, Li JL (2019) Cadmium exposure triggers mitochondrial dysfunction and oxidative stress in chicken (Gallus gallus) kidney via mitochondrial UPR inhibition and Nrf2-mediated antioxidant defense activation. Sci Total Environ 1(689):1160–1171

    Google Scholar 

  12. Junsi M, Takahashi Yupanqui C, Usawakesmanee W, Slusarenko A, Siripongvutikorn S (2020) Thunbergia laurifolia leaf extract increased levels of antioxidant enzymes and protected human cell-lines in vitro against cadmium. Antioxidants 9(1):47–54

    CAS  PubMed Central  Google Scholar 

  13. Haouem S, Hani E (2013) A effect of cadmium on lipid peroxidation and on some antioxidants in the liver, kidneys and testes of rats given diet containing cadmium-polluted radish bulbs. J Toxicol Pathol 26(4):359–364

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Tsipoura N, Burger J, Niles L, Dey A, Gochfeld M, Peck M, Mizrahi D (2017) Metal levels in shorebird feathers and blood during migration through Delaware Bay. Arch Environ Contam Toxicol 72(4):562–574

    CAS  PubMed  Google Scholar 

  15. Farhat A, Crump D, Bidinosti L, Boulanger E, Basu N, Hecker M, Head JA (2020) An early–life stage alternative testing strategy for assessing the impacts of environmental chemicals in birds. Environ Toxicol Chem 39(1):141–154

    CAS  PubMed  Google Scholar 

  16. Ogunrinola OO, Wusu DA, Fajana OO, Olaitan SN, Smith ZO, Bolaji ARI (2016) Effect of low level cadmium exposure on superoxide dismutase activity in rat. Trop J Pharm Res 15(1):115–119

    CAS  Google Scholar 

  17. Rehman H, Aziz AT, Saggu S, VanWert AL, Zidan N, Saggu S (2017) Additive toxic effect of deltamethrin and cadmium on hepatic, hematological, and immunological parameters in mice. Toxicol Ind Health 33(6):495–502

  18. Peters JL, Fabian MP, Levy JI (2019) Epidemiologically-informed cumulative risk hypertension models simulating the impact of changes in metal, organochlorine, and non-chemical exposures in an environmental justice community. Environ Res 20:108544

    Google Scholar 

  19. Menke A, Muntner P, Silbergeld EK, Platz EA, Guallar E (2009) Cadmium levels in urine and mortality among US adults. Environ Health Perspect 117(2):190–196

    CAS  PubMed  Google Scholar 

  20. Messner B, Knoflach M, Seubert A, Ritsch A, Pfaller K, Henderson B, Wick G (2009) Cadmium is a novel and independent risk factor for early atherosclerosis mechanisms and in vivo relevance. Arterioscl Throm Vas 29(9):1392–1398

    CAS  Google Scholar 

  21. Oliveira TF, Batista PR, Leal MA, Campagnaro BP, Nogueira BV, Vassallo DV, Meyrelles SS, Padilha AS (2019) Chronic cadmium exposure accelerates the development of atherosclerosis and induces vascular dysfunction in the aorta of ApoE−/− mice. Biol Trace Elem Res 187(1):163–171

    CAS  PubMed  Google Scholar 

  22. Horiguchi H, Oguma E, Kayama F (2011) Cadmium induces anemia through interdependent progress of hemolysis, body iron accumulation and insufficient erythropoietin production in rats. Toxicol Sci 122(1):198–210

    CAS  PubMed  Google Scholar 

  23. Ohsawa M, Omara F, Bernier J, Brousseau P, Fournier M (2008) Effects of physiological concentrations of heavy metals both individually and in mixtures on the viability and function of peripheral blood human leukocytes in vitro. J Toxicol Environ Health Sci Part A71(19):1327–1337

    Google Scholar 

  24. Julin B, Wolk A, Johansson JE, Andersson SO, Akesson AO (2012) Dietary cadmium exposure and prostate cancer incidence: a population-based prospective cohort study. Br J Cancer 107(5):895–900

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Czarnomysy R, Bielawska A, Muszyńska A, Bielawski K (2015) Effects of novel alkyl pyridine platinum complexes on apoptosis in Ishikawa endometrial cancer cells. Med Chem 11(6):540–550

    CAS  PubMed  Google Scholar 

  26. Ali S, Hussain S, Khan R, Mumtaz S, Ashraf N, Andleeb S, Shakir HA, Tahir HM, Khan MKA, Ulhaq M (2019) Renal toxicity of heavy metals (cadmium and mercury) and their amelioration with ascorbic acid in rabbits. Environ Sci Pollut Res Int 26(4):3909–3920

    CAS  PubMed  Google Scholar 

  27. Dar KK, Ali S, Ejaz M, Nasreen S, Ashraf N, Gillani SF, Shafi N, Safeer S, Khan MA, Andleeb S, Mughal TA (2019) In vivo induction of hepatocellular carcinoma by diethylnitrosoamine and pharmacological intervention in balb c mice using Bergeniaciliata extracts. Braz J Biol 79(4):629–638

    CAS  PubMed  Google Scholar 

  28. Mughal TA, Saleem MZ, Ali S, Anwar KK, Bashir MM, Babar M, Khan MA (2019) Evaluation of hepatotoxicity of carbon tetrachloride and pharmacological intervention by vitamin E in balb c mice. Pak J Zool 51(2):755–761

    CAS  Google Scholar 

  29. Mumtaz S, Ali S, Khan R, Andleeb S, Ulhaq M, Khan MA, Shakir HA (2019) The protective role of ascorbic acid in the hepatotoxicity of cadmium and mercury in rabbits. Environ Sci Pollut Res Int 26(14):14087–14096

    CAS  PubMed  Google Scholar 

  30. Khan R, Ali S, Mumtaz M, Andleeb S, Ulhaq M, Tahir HM, Khan MKA, Khan MA, Shakir HA (2019) Toxicological effects of heavy metals (cadmium and mercury) on blood and thyroid gland and pharmacological intervention by vitamin c in rabbits. Environ Sci Pollut Res Int 26(16):16727–16741

  31. Ali S, Ejaz M, Dar KK, Nasreen N, Ashraf N, Gillani SF, Shafi N, Safeer S, Khan MA, Andleeb S, Mughal TA (2020) Evaluation of chemopreventive and chemotherapeutic effect of Artemisia vulgaris against diethylnitrosamine induced hepatocellular carcinogenesis in Balb C mice. Braz J Biol 80(3):489–496

    Google Scholar 

  32. Hussain S, Ali S, Mumtaz S, Shakir HA, Ahmad F, Tahir HM, Ulhaq M (2020) Dose and duration-dependent toxicological evaluation of lead acetate in chicks. Environ Sci Pollut Res 27(13):15149–15164

    CAS  Google Scholar 

  33. Ali S, Awan Z, Mumtaz S, Shakir HA, Ahmad F, Tahir HM, Ulhaq M (2020) Cardiac toxicity of heavy metals (cadmium and mercury) and pharmacological intervention by vitamin C in rabbits. Environ Sci Pollut Res Int 27(23):29266–29279

    CAS  PubMed  Google Scholar 

  34. Ara C, Asmatullah, Butt N, Ali S, Batool F, Shakir HA, Arshad A (2020) Abnormal steroidogenesis, oxidative stress and reprotoxicity following prepubertal exposure to butyl paraben in mice and protective effect of Curcuma longa. Environ Sci Pollut. https://doi.org/10.1007/s11356-020-10819-8

  35. Nasiadek M, Danilewicz M, Sitarek K, Świątkowska E, Daragó A, Stragierowicz J, Kilanowicz A (2018) The effect of repeated cadmium oral exposure on the level of sex hormones, estrous cyclicity, and endometrium morphometry in female rats. Environ Sci Pollut Res 25(28):28025–28038

    CAS  Google Scholar 

  36. Linne JJ, Ringsrud KM (1999) Clinical laboratory science, the basic and routine techniques. 4thed. Moseby, Saint Louis, pp 279–295

    Google Scholar 

  37. Assi MA, Hezmee MN, Abba Y, Sabri MY, Haron AW, Baiee FH, Rajion MA (2017) Effect of Nigella sativa pre-treatment on sub-chronic lead acetate induced hematological and biochemical alterations. J Comput Theor Nanosci 14(6):2752–2758

    CAS  Google Scholar 

  38. Ayyat MS, Bakir AA, Attia AI, El-Zaiat AA (2005) The role of clay or vitamin e in silver montazah layer hens fed on diets contaminated by lead at various levels. 1-performance and egg components. Hung Anim Prod J 54(1):81–89

    CAS  Google Scholar 

  39. Dacie JV, Lewis SM (1984) Practical hematology. Churchill Livingstone, New York, pp 202–453

    Google Scholar 

  40. Dumas BT, Watson W, Biggs HG (1971) Direct colorimetric method for determination of serum albumin. Clin Chem Acta 31:78–87

    Google Scholar 

  41. Reinhold JG (1953) Total protein, albumin and globulin. Standard Methods Clin Chem 1(1):88

    CAS  Google Scholar 

  42. Buccolo G (1973) Quantitative determination of serum triglycerides by use of enzymes. Clin Chem 19(5):476–482

    Google Scholar 

  43. Zak B, Dickenman RC, White EG, Burnett H, Cherney PJ (1954) Rapid estimation of free and total cholesterol. Am J Clin Pathol 24(5):1307–1315

    CAS  PubMed  Google Scholar 

  44. Naito HK (1984) HDL cholesterol. In: Kaplan A (ed) Clinal chemistry, vol 437. The C.V Mosby Co, St Louis, pp 1207–1213

    Google Scholar 

  45. Blisard KS, Mieyal JJ (1979) Characterization of the aniline hydroxylase activity of erythrocytes. J Biol Chem 254(12):5104–5110

    CAS  PubMed  Google Scholar 

  46. Beutler E, Durgun O, Kelly BM (1963) Improved method for the determination of blood glutathione. J Lab Clin Med 5(2):882–890

    Google Scholar 

  47. Du-Preez HH, Steyn GJ (1992) A preliminary investigation of the concentration of selected metals in the tissues and organs of the tiger fish (Hydrocynusvittatus) from the Oilfants River, Kruger National Park, South Africa. Water SA 18:131–136

    CAS  Google Scholar 

  48. Shakir HA, Qazi JI, Chaudhry AS, Ali S (2015) Metal bioaccumulation of levels in different organs of three edible fish species from the river Ravi, Pakistan. Int J Aquat Biol 3(3):135–148

    Google Scholar 

  49. Sankhla MS, Kumari M, Nandan M, Kumar R, Agrawal P (2016) Heavy metals contamination in water and their hazardous effect on human health-a review. Int J Curr Microbiol App Sci 5(10):759–766

    CAS  Google Scholar 

  50. Liao Y, Cao H, Xia B, Xiao Q, Liu P, Hu G, Zhang C (2016) Changes in trace element contents and morphology in bones of duck exposed to molybdenum or/and cadmium. Biol Trace Elem Res 2(4):1–9

    Google Scholar 

  51. Salami SA, Majoka MA, Saha S, Garber A, Gabarrou JF (2015) Efficacy of dietary antioxidants on broiler oxidative stress, performance and meat quality: science and market. Avian Biol Res 8(2):65–78

    Google Scholar 

  52. Lim HS, Lee HH, Kim TH, Lee BR (2016) Relationship between heavy metal exposure and bone mineral density in Korean adult. J Bone Metabol 23(4):223–231

    Google Scholar 

  53. Raina S, Sachar A (2014) Effect of heavy metal, zinc and carbamate pesticide, sevin on haematological parameters of fish, Labeoboga. Int J Innov Res Sci Eng Technol 3(5):12636–12644

    Google Scholar 

  54. Sharma J, Langer S (2014) Effect of manganese on haematological parameters of fish, Garragotylagotyla. J Entomol Zool Stud 2(3):77–81

    Google Scholar 

  55. Ali AJ, Akbar NJ, Kumar MA, John BA (2018) Effect of cadmium chloride on the haematologicalprofiles of the reshwaterornamental ish, cyprinuscarpiokoi (Linnaeus, 1758). J Clean WAS 2(2):10–15

    Google Scholar 

  56. Debasmita S, Sahu S, Singh A, Mohapatra AK (2016) Hematotoxic effects of cadmium on fresh water cat fish, Clariasgariepinus(burchell, 1822). Environ Monit Assess 187(4):172–187

    Google Scholar 

  57. Gabol K, Khan MZ, Khan MUA, Khan P, Fatima F, Siddiqui S, Jabeen T, Baig N, Iqbal MA, Usman A, Hashmi M, Tabish M (2014) Induced effects of lead, chromium, cadmium on Gallus domesticus. Can J Pure Appl Sci 8(3):3035–3042

    Google Scholar 

  58. Andjelkovic M, Buha Djordjevic A, Antonijevic E, Antonijevic B, Stanic M, Kotur-Stevuljevic J, Spasojevic-Kalimanovska V, Jovanovic M, Boricic N, Wallace D, Bulat Z (2019) Toxic effect of acute cadmium and lead exposure in rat blood, liver, and kidney. Int J Environ Res Public Health 16(2):274

    CAS  PubMed Central  Google Scholar 

  59. Zhang Z, Zheng Z, Cai J, Liu Q, Yang J, Gong Y, Wu M, Shen Q, Xu S (2017) Effect of cadmium on oxidative stress and immune function of common carp (Cyprinus carpio L.) by transcriptome analysis. Aquat Toxicol 192:171–179

    CAS  PubMed  Google Scholar 

  60. Shalaby AME (2001) Protective effect of ascorbic acid against mercury intoxication in Nile tilapia (Oreochromiusniloticus). J Egypt Acad Soc Environ Dev 2(3):79–97

    Google Scholar 

  61. Saedi S, Shirazi MR, Totonchi M, Zamiri MJ, Derakhshanfar A (2019) Effect of prepubertalexposure to CdCl2 on the liver, hematological, and biochemical parameters in female rats; an experimental study. Biol Trace Elem Res 9:1–10

    Google Scholar 

  62. Abdelaziz I, Elhabiby MI, Ashour AA (2013) Toxicity of cadmium and protective effect of beehoney, vitamins C and B complex. Hum Exp Toxicol 32(4):362–370

    CAS  PubMed  Google Scholar 

  63. Lovasova E, Racz O, Cimbolakova I, Novakova J, Dombrovsky P, Nistiar F (2013) Effects of chronic low-dose cadmium exposure on selected biochemical and antioxidant parameters in rats. J Toxicol Environ Health Part A 76(17):1033–1038

    CAS  Google Scholar 

  64. Suganya T, Senthilkumar S, Deepa K, Muralidharan J, Sasikumar P, Muthusamy N (2016) Metal toxicosis in poultry. A review. Int J Sci 5(2):515–524

    Google Scholar 

  65. Hashem M, Gamal El-Dein I, Eltahawy S (2019) Clinicopathological studies on the ameliorative effects of selenium and vitamin E against cadmium toxicity in chickens. Zagazig Veter J 47(3):277–287

    Google Scholar 

  66. Yang S, Zhang Z, He J, Li J, Zhang J, Xing H, Xu S (2012) Ovarian toxicity induced by dietary cadmium in hen. Biol Trace Elem Res 148(1):53–60

    CAS  PubMed  Google Scholar 

  67. Heshmati A, Salaramoli J (2015) Distribution pattern of cadmium in liver and kidney of broiler chicken: an experimental study. J Food Q Hazards Control 2(1):15–19

    CAS  Google Scholar 

  68. Olgun O, Yildiz AO, Şahin A (2020) Evaluation of dietary presence or use of cadmium in poultry. World’s Poult Sci J 76(1):64–73

    Google Scholar 

  69. Abduljaleel SA, Shuhaimi-Othman M (2013) Toxicity of cadmium and lead in Gallus gallus domesticus assessment of body weight and metal content in tissues after metal dietary supplements. Pak J Biol Sci 16(22):1551–1556

    CAS  PubMed  Google Scholar 

  70. Al-sawafi AG, Wang L, Yan Y (2017) Cadmium accumulation and its histological effect on brain and skeletal muscle of zebrafish. J Heavy Metal Toxic Dis 2(1):2–10

    Google Scholar 

  71. Josthna P, Geetharathan T, Sujatha P, Deepika G (2012) Accumulation of lead and cadmium in the organs and tissues of albino rat. Int J Pharm Life Sci 3(12):272–277

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaukat Ali.

Ethics declarations

Conflict of Interest

Authors declare no conflict of interest of any kind either financial or authorship for this publication.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, S., Bashir, S., Mumtaz, S. et al. Evaluation of Cadmium Chloride-Induced Toxicity in Chicks Via Hematological, Biochemical Parameters, and Cadmium Level in Tissues. Biol Trace Elem Res 199, 3457–3469 (2021). https://doi.org/10.1007/s12011-020-02453-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02453-9

Keywords

Navigation