Skip to main content

Advertisement

Log in

Hair Trace Element and Electrolyte Content in Women with Natural and In Vitro Fertilization-Induced Pregnancy

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The objective of the present study was to perform comparative analysis of hair trace element content in women with natural and in vitro fertilization (IVF)-induced pregnancy. Hair trace element content in 33 women with IVF-induced pregnancy and 99 age- and body mass index-matched control pregnant women (natural pregnancy) was assessed using inductively coupled plasma mass spectrometry. The results demonstrated that IVF-pregnant women are characterized by significantly lower hair levels of Cu, Fe, Si, Zn, Ca, Mg, and Ba at p < 0.05 or lower. Comparison of the individual levels with the national reference values demonstrated higher incidence of Fe and Cu deficiency in IVF-pregnant women in comparison to that of the controls. IVF pregnancy was also associated with higher hair As levels (p < 0.05). Multiple regression analysis revealed a significant interrelation between IVF pregnancy and hair Cu, Fe, Si, and As content. Hair Cu levels were also influenced by vitamin/mineral supplementation and the number of pregnancies, whereas hair Zn content was dependent on prepregnancy anthropometric parameters. In turn, planning of pregnancy had a significant impact on Mg levels in scalp hair. Generally, the obtained data demonstrate an elevated risk of copper, iron, zinc, calcium, and magnesium deficiency and arsenic overload in women with IVF-induced pregnancy. The obtained data indicate the necessity of regular monitoring of micronutrient status in IVF-pregnant women in order to prevent potential deleterious effects of altered mineral homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kontic-Vucinic O, Sulovic N, Radunovic N (2005) Micronutrients in women’s reproductive health: I. Vitamins. Int J Fertil Womens Med 51:106–115

    Google Scholar 

  2. Kontic-Vucinic O, Sulovic N, Radunovic N (2005) Micronutrients in women’s reproductive health: II. Minerals and trace elements. Int J Fertil Womens Med 51:116–124

    Google Scholar 

  3. Al-Kunani AS, Knight R, Haswell SJ, Thompson JW, Lindow SW (2001) The selenium status of women with a history of recurrent miscarriage. Br J Obstet Gynaecol 108:1094–1097

    CAS  Google Scholar 

  4. Tian X, Diaz FJ (2013) Acute dietary zinc deficiency before conception compromises oocyte epigenetic programming and disrupts embryonic development. Dev Biol 376:51–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hosseini B, Eslamian G (2015) Association of micronutrient Intakes with female infertility: review of recent evidence. Thrita 4:e25586

    Article  Google Scholar 

  6. Pagliardini L, Vigano P, Molgora M, Persico P, Salonia A, Vailati SH, Paffoni A, Somigliana E, Papaleo E, Candiani M (2015) High prevalence of vitamin D deficiency in infertile women referring for assisted reproduction. Nutrients 7:9972–9984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Özkaya MO, Nazıroğlu M, Barak C, Berkkanoglu M (2011) Effects of multivitamin/mineral supplementation on trace element levels in serum and follicular fluid of women undergoing in vitro fertilization (IVF). Biol Trace Elem Res 139:1–9

    Article  PubMed  Google Scholar 

  8. Ruder EH, Hartman TJ, Reindollar RH, Goldman MB (2014) Female dietary antioxidant intake and time to pregnancy among couples treated for unexplained infertility. Fertil Steril 101:759–766

    Article  CAS  PubMed  Google Scholar 

  9. Chavarro JE, Rich-Edwards JW, Rosner BA, Willett WC (2006) Iron intake and risk of ovulatory infertility. Obstet Gynecol 108:1145–1152

    Article  CAS  PubMed  Google Scholar 

  10. Grajecki D, Zyriax BC, Buhling KJ (2012) The effect of micronutrient supplements on female fertility: a systematic review. Arch Gynecol Obstet 285:1463–1471

    Article  CAS  PubMed  Google Scholar 

  11. Bloom MS, Louis GMB, Sundaram R, Kostyniak PJ, Jain J (2011) Associations between blood metals and fecundity among women residing in New York state. Reprod Toxicol 31:158–163

    Article  CAS  PubMed  Google Scholar 

  12. Haggarty P, McCallum H, McBain H, Andrews K, Duthie S, McNeill G, Templeton A, Haites N, Campbell D, Bhattacharya S (2006) Effect of B vitamins and genetics on success of in-vitro fertilisation: prospective cohort study. Lancet 367:1513–1519

    Article  CAS  PubMed  Google Scholar 

  13. Gaskins AJ, Afeiche MC, Wright DL, Toth TL, Williams PL, Gillman MW, Hauser R, Chavarro JE (2014) Dietary folate and reproductive success among women undergoing assisted reproduction. Obstet Gynecol 124:801–809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Figà-Talamanca I (2006) Occupational risk factors and reproductive health of women. Occ Med 56:521–531

    Article  Google Scholar 

  15. Mendola P, Messer LC, Rappazzo K (2008) Science linking environmental contaminant exposures with fertility and reproductive health impacts in the adult female. Fertil Steril 89:81–94

    Article  Google Scholar 

  16. Thompson J, Bannigan J (2008) Cadmium: toxic effects on the reproductive system and the embryo. Reprod Toxicol 25:304–315

    Article  CAS  PubMed  Google Scholar 

  17. Iavicoli I, Fontana L, Bergamaschi A (2009) The effects of metals as endocrine disruptors. J Toxicol Environ Health B 12:206–223

    Article  CAS  Google Scholar 

  18. Paksy K, Varga B, Lazar P (1997) Zinc protection against cadmium-induced infertility in female rats. Effect of zinc and cadmium on the progesterone production of cultured granulosa cells. Biometals 10:27–36

    Article  CAS  PubMed  Google Scholar 

  19. Chojnacka K, Zielińska A, Górecka H, Dobrzański Z, Górecki H (2010) Reference values for hair minerals of Polish students. Environ Toxicol Pharmacol 29:314–319

    Article  CAS  PubMed  Google Scholar 

  20. Razagui IBA, Ghribi I (2005) Maternal and neonatal scalp hair concentrations of zinc, copper, cadmium, and lead. Biol Trace Elem Res 106:1–27

    Article  CAS  PubMed  Google Scholar 

  21. Dongarrà G, Varrica D, Tamburo E, D’Andrea D (2012) Trace elements in scalp hair of children living in differing environmental contexts in Sicily (Italy). Environ Toxicol Pharmacol 34:160–169

    Article  PubMed  Google Scholar 

  22. Christensen JM (1995) Human exposure to toxic metals: factors influencing interpretation of biomonitoring results. Sci Total Environ 166:89–135

    Article  CAS  PubMed  Google Scholar 

  23. Hoet P, Jacquerye C, Deumer G, Lison D, Haufroid V (2013) Reference values and upper reference limits for 26 trace elements in the urine of adults living in Belgium. Clin Chem Lab Med 51:839–849

    Article  CAS  PubMed  Google Scholar 

  24. Tomic S, Lakatos J, Valkovic J (1989) Analysis of trace elements in hair of pregnant women using XRF spectrometry. X-Ray Spectrom 18:73–76

    Article  CAS  Google Scholar 

  25. Skalny AV, Berezkina ES, Kiyaeva EV, Alidzhanova IE, Grabeklis AR, Tinkov AA (2016) The effect of alcohol consumption on maternal and cord blood electrolyte and trace element levels. Acta Sci Pol Technol 15:439–445

    Article  Google Scholar 

  26. Skalny AV, Berezkina ES, Grabeklis AR, Kiyaeva EV, Tinkov AA (2016) Hair trace elements in women with alcohol abuse and their offspring. Trace Elem Electroly 33:144–147

    Article  Google Scholar 

  27. Krajewski P, Chudzik A, Pokrzywnicka M, Kalinka J, Kwiatkowska M (2009) Macro-, micro-and trace elements concentrations in mother’s and newborn’s hair and its impact on pregnancy outcome: a review. APM 15:67–71

    Google Scholar 

  28. Van Voorhis BJ (2007) In vitro fertilization. N Engl J Med 356:379–386

    Article  CAS  PubMed  Google Scholar 

  29. LeBlanc A, Dumas P, Lefebvre L (1999) Trace element content of commercial shampoos: impact on trace element levels in hair. Sci Total Environ 229:121–124

    Article  CAS  PubMed  Google Scholar 

  30. Zhao LJ, Ren T, Zhong RG (2012) Determination of lead in human hair by high resolution continuum source graphite furnace atomic absorption spectrometry with microwave digestion and solid sampling. Anal Lett 45:2467–2481

    Article  CAS  Google Scholar 

  31. Morton J, Carolan VA, Gardiner PH (2002) Removal of exogenously bound elements from human hair by various washing procedures and determination by inductively coupled plasma mass spectrometry. Anal Chim Acta 455:23–34

    Article  CAS  Google Scholar 

  32. Skalny AV, Skalnaya MG, Tinkov AA, Serebryansky EP, Demidov VA, Lobanova YN, Grabeklis AR, Berezkina ES, Gryazeva IV, Skalny AA, Nikonorov AA (2015) Reference values of hair toxic trace elements content in occupationally non-exposed Russian population. Environ Toxicol Pharmacol 40:18–21

    Article  CAS  PubMed  Google Scholar 

  33. Skalny AV, Skalnaya MG, Tinkov AA, Serebryansky EP, Demidov VA, Lobanova YN, Grabeklis AR, Berezkina ES, Gryazeva IV, Skalny AA, Skalnaya OA, Zhivaev NG, Nikonorov AA (2015) Hair concentration of essential trace elements in adult non-exposed Russian population. Environ Monit Assess 187:1–8

    Article  CAS  Google Scholar 

  34. Skalny AV (2003) Reference values of chemical elements concentration in hair, obtained by means of ICP-AES method in ANO Center for Biotic Medicine. Trace Elem Med 4:55–56

    Google Scholar 

  35. Al-Katib SR, Al-Kazali BS, Al-Muhanna MY (2016) The effect of controlled ovarian hyperstimulation on iron status in infertile women. Al-Kufa University Journal for Biology 7:89–92

    Google Scholar 

  36. Buhling KJ, Grajecki D (2013) The effect of micronutrient supplements on female fertility. Curr Opin Obstet Gynecol 25:173–180

    Article  PubMed  Google Scholar 

  37. Ribot B, Aranda N, Viteri F, Hernández-Martínez C, Canals J, Arija V (2012) Depleted iron stores without anaemia early in pregnancy carries increased risk of lower birthweight even when supplemented daily with moderate iron. Hum Reprod 27:1260–1266

    Article  CAS  PubMed  Google Scholar 

  38. Ajayi OO, Charles-Davies MA, Arinola OG (2012) Progesterone, selected heavy metals and micronutrients in pregnant Nigerian women with a history of recurrent spontaneous abortion. Afr Health Sci 12:153–159

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Khulood ASM, Faris AAA, Hussain Saad A (2005) Copper and zinc status in women with unexplained infertility. AJPS 2(2):72–75

    Google Scholar 

  40. Petkova-Marinova T, Ruseva B, Atanasova B, Paneva-Barzashka B, Laleva P, Petrov V (2016) Relationships between parameters of iron metabolism and serum concentrations of copper and selenium in women with normal and problem pregnancies. MRJMMS 4:406–414

    Google Scholar 

  41. Mistry HD, Pipkin FB, Redman CW, Poston L (2012) Selenium in reproductive health. Am J Obstet Gynecol 206:21–30

    Article  CAS  PubMed  Google Scholar 

  42. Khedun SM, Ngotho D, Moodley J, Naicker T (1998) Plasma and red cell magnesium levels in black African women with hypertensive disorders of pregnancy. Hypertens Pregnancy 17:125–134

    Article  Google Scholar 

  43. O'Shaughnessy A, Muneyyirci-Delale O, Nacharaju VL, Dalloul M, Altura BM, Altura BT (2001) Circulating divalent cations in asymptomatic ovarian hyperstimulation and in vitro fertilization patients. Gynecol Obstet Investig 52:237–242

    Article  Google Scholar 

  44. Dickerson EH, Sathyapalan T, Knight R, Maguiness SM, Killick SR, Robinson J, Atkin SL (2011) Endocrine disruptor & nutritional effects of heavy metals in ovarian hyperstimulation. J Assist Reprod Genet 28:1223–1228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Drbohlav P, Bencko V, Masata J, Bendl J, Rezácová J, Zouhar T, Cerný V, Hálková E (1998) Detection of cadmium and zinc in the blood and follicular fluid in women in the IVF and ET program. Ceska Gynekol 63:292–300

    CAS  PubMed  Google Scholar 

  46. International Zinc Nutrition Consultative Group (IZiNCG), Brown KH, Rivera JA, Bhutta Z, Gibson RS, King JC, Lönnerdal B, Ruel MT, Sandtröm B, Wasantwisut E, Hotz C (2004) International Zinc Nutrition Consultative Group (IZiNCG) technical document #1. Assessment of the risk of zinc deficiency in populations and options for its control. Food Nutr Bull 25:S99–203

    Article  Google Scholar 

  47. Srinivas M, Gupta DK, Rathi SS, Grover JK, Vats V, Sharma JD, Mitra DK (2001) Association between lower hair zinc levels and neural tube defects. Indian J Pediatr 68:519–522

    Article  CAS  PubMed  Google Scholar 

  48. Keen CL, Uriu-Adams JY, Skalny A, Grabeklis A, Grabeklis S, Green K, Yevtushok L, Wertelecki WW, Chambers CD (2010) The plausibility of maternal nutritional status being a contributing factor to the risk for fetal alcohol spectrum disorders: the potential influence of zinc status as an example. Biofactors 36:125–135

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Li YV (2014) Zinc and insulin in pancreatic beta-cells. Endocrine 45:178–189

    Article  CAS  PubMed  Google Scholar 

  50. Haase H, Maret W (2005) Fluctuations of cellular, available zinc modulate insulin signaling via inhibition of protein tyrosine phosphatases. J Trace Elem Med Biol 19:37–42

    Article  CAS  PubMed  Google Scholar 

  51. Lee EJ, Kim SM (2005) The association of hair zinc with metabolic risk factors for selected women in Korea. Korean J Obes 14:170–177

    Google Scholar 

  52. Jiao HT, Liu P, Lu WT, Qiao M, Ren XF, Zhang Z (2014) Correlation study between simple obesity and serum concentrations of essential elements. Trace Elem Electroly 31:53–59

    Article  CAS  Google Scholar 

  53. Redward A, Cutfield W, Peek J, Young N (2012) The lifestyle habits and dietary intake of women undergoing in vitro fertilisation (IVF) treatment. Obes Res Clin Pract 6:89

    Article  Google Scholar 

  54. Krausz C, Bonaccorsi L, Luconi M, Fuzzi B, Criscuoli L, Pellegrini S, Forti G, Baldi E (1995) Intracellular calcium increase and acrosome reaction in response to progesterone in human spermatozoa are correlated with in-vitro fertilization. Hum Reprod 10:120–124

    Article  CAS  PubMed  Google Scholar 

  55. Hanna CW, Bloom MS, Robinson WP, Kim D, Parsons PJ, vom Saal FS, Taylor JA, Steuerwald AJ, Fujimoto VY (2012) DNA methylation changes in whole blood is associated with exposure to the environmental contaminants, mercury, lead, cadmium and bisphenol A, in women undergoing ovarian stimulation for IVF. Hum Reprod 27:1401–1410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bloom MS, Kim K, Kruger PC, Parsons PJ, Arnason JG, Steuerwald AJ, Fujimoto VY (2012) Associations between toxic metals in follicular fluid and in vitro fertilization (IVF) outcomes. J Assist Reprod Genet 29:1369–1379

    Article  PubMed  PubMed Central  Google Scholar 

  57. Wright DL, Afeiche MC, Ehrlich S, Smith K, Williams PL, Chavarro JE, Batsis M, Toth TL, Hauser R (2015) Hair mercury concentrations and in vitro fertilization (IVF) outcomes among women from a fertility clinic. Reprod Toxicol 51:125–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kim K, Steuerwald AJ, Parsons PJ, Fujimoto VY, Browne RW, Bloom MS (2011) Biomonitoring for exposure to multiple trace elements via analysis of urine from participants in the Study of Metals and Assisted Reproductive Technologies (SMART). J Environ Monit 13:2413–2419

    Article  CAS  PubMed  Google Scholar 

  59. Kim D, Bloom MS, Parsons PJ, Fitzgerald EF, Bell EM, Steuerwald AJ, Fujimoto VY (2013) A pilot study of seafood consumption and exposure to mercury, lead, cadmium and arsenic among infertile couples undergoing in vitro fertilization (IVF). Environ Toxicol Pharmacol 36:30–34

    Article  CAS  PubMed  Google Scholar 

  60. García-Fortea P, Cohen-Corcia I, Reche-Rosado A, González-Mesa E (2016) Correlation of four toxic elements concentrations in hair and follicular fluid collected from women undergoing in vitro fertilization. J Clin Toxicol 6:2161–0495

    Google Scholar 

  61. Golub MS (1994) Maternal toxicity and the identification of inorganic arsenic as a developmental toxicant. Reprod Toxicol 8:283–295

    Article  CAS  PubMed  Google Scholar 

  62. Wang A, Holladay SD, Wolf DC, Ahmed SA, Robertson JL (2006) Reproductive and developmental toxicity of arsenic in rodents: a review. Int J Toxicol 25:319–331

    Article  PubMed  Google Scholar 

  63. Skalnaya MG, Zhavoronkov AA, Kalinina II, Skalny AV (1996) Characteristic of thymus in newborn mice after chronic exposure of their mothers to sodium arsenite. Trace Elem Electroly 13:88–91

    CAS  Google Scholar 

  64. Holson JF, Stump DG, Clevidence KJ, Knapp JF, Farr CH (2000) Evaluation of the prenatal developmental toxicity of orally administered arsenic trioxide in rats. Food Chem Toxicol 38:459–466

    Article  CAS  PubMed  Google Scholar 

  65. Rahman A, Vahter M, Ekström EC, Rahman M, Golam Mustafa AH, Wahed MA, Yunus M, Persson LA (2007) Association of arsenic exposure during pregnancy with fetal loss and infant death: a cohort study in Bangladesh. Am J Epidemiol 165:1389–1396

    Article  PubMed  Google Scholar 

  66. Skalny AV, Skalnaya MG, Nikonorov AA, Tinkov AA (2016) Selenium antagonism with mercury and arsenic: from chemistry to population health and demography. In: Hatfield DL, Schweizer U, Tsuji PA, Gladyshev VN (Eds.) Selenium Its Molecular Biology and Role in Human Health. 4 Edition, 2016, 401–412 p

  67. Kravchenko J, Darrah TH, Miller RK, Lyerly HK, Vengosh A (2014) A review of the health impacts of barium from natural and anthropogenic exposure. Environ Geochem Health 36:797–814

    Article  CAS  PubMed  Google Scholar 

  68. Chowdhury BA, Chandra RK (1986) Biological and health implications of toxic heavy metal and essential trace element interactions. Prog Food Nutr Sci 11:55–113

    Google Scholar 

  69. Bargellini A, Venturelli F, Casali E, Ferrari A, Marchesi I, Borella P (2016) Trace elements in starter infant formula: dietary intake and safety assessment. Environ Sci Pollut Res 1–10. doi: 10.1007/s11356-016-8290-9

Download references

Acknowledgements

The reesearch has been supported by the Grant from the Russian Science Foundation (project no. 14-48-00043) of Tomsk State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anatoly V. Skalny.

Ethics declarations

The research protocol of the current study was approved by the Ethics Committee for Interdisciplinary Investigations (Tomsk State University/Psychological Institute of the Russian Academy of Education). The study was carried out in agreement with the principles of the Declaration of Helsinki and its later amendments. All women took part in the present investigation on a voluntary basis and were informed about the experimental procedures. The informed consent was signed by all participants before the investigation.

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skalny, A.V., Tinkov, A.A., Voronina, I. et al. Hair Trace Element and Electrolyte Content in Women with Natural and In Vitro Fertilization-Induced Pregnancy. Biol Trace Elem Res 181, 1–9 (2018). https://doi.org/10.1007/s12011-017-1032-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-017-1032-0

Keywords

Navigation