Skip to main content

Advertisement

Log in

Dietary High Fluorine Alters Intestinal Microbiota in Broiler Chickens

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

This study investigated the effects of dietary high fluorine on ileal and cecal microbiota in broiler chickens. Two hundred eighty 1-day-old broiler chickens were randomly assigned to four groups and raised for 42 days. The control group was fed a corn-soybean basal diet (fluorine 22.6 mg/kg). The other three groups were fed the same basal diet, but supplemented with 400, 800, and 1200 mg/kg fluorine (high fluorine groups I, II, and III), administered in the form of sodium fluoride. The microbiota of ileal and cecal digesta was assessed with plate counts and polymerase chain reaction-based denaturing gradient gel electrophoresis (PCR-DGGE). It was found that, compared with those in the control group, the counts of Lactobacillus spp. and Bifidobacterium spp. were markedly decreased (P < 0.01 or P < 0.05), whereas the counts of Escherichia coli and Enterococcus spp. were significantly increased (P < 0.01 or P < 0.05) in the high fluorine groups II and III. PCR-DGGE analysis showed that the number of DGGE bands, similarity, and Shannon index of ileal and cecal bacteria were markedly reduced in the high fluorine groups II and III from 21 to 42 days. Sequencing analysis revealed that the composition of the intestinal microbiota was altered in the high fluorine groups. In conclusion, dietary fluorine in the range of 800–1200 mg/kg obviously altered the bacterial counts, and the diversity and composition of intestinal microbiota in broiler chickens, a finding which implies that dietary high fluorine can disrupt the natural balance and structure of the intestinal microbiota.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Garrott RA, Eberhardt LL, Otton JK, White PJ, Chaffee MA (2002) A geochemical trophic cascade in Yellowstone’s geothermal environments. Ecosystems 5(7):659–666

    Article  CAS  Google Scholar 

  2. Zheng B, Wu D, Wang B, Liu X, Wang M, Wang A, Xiao G, Liu P, Finkelman RB (2007) Fluorosis caused by indoor coal combustion in China: discovery and progress. Environ Geochem Health 29(2):103–108

    Article  CAS  PubMed  Google Scholar 

  3. Dai SH, Dy R, Ma SM (2004) The cause of endemic fluorosis in Western Guizhou Province, Southwest China. Fuel 83(14–15):2095–2098

    Article  CAS  Google Scholar 

  4. Meenakshi MRC (2006) Fluoride in drinking water and its removal. J Hazard Mater 137(1):456–463

    Article  CAS  PubMed  Google Scholar 

  5. Tekle-Haimanot R, Melaku Z, Kloos H, Reimann C, Fantaye W, Zerihun L, Bjorvatn K (2006) The geographic distribution of fluoride in surface and groundwater in Ethiopia with an emphasis on the Rift Valley. Sci Total Environ 367(1):182–190

    Article  CAS  PubMed  Google Scholar 

  6. Ba Y, Huang H, Yang YJ, Cui LX, Zhu JY, Zhu CR, Liu J, Zhang YW (2009) The association between osteocalcin gene polymorphism and dental fluorosis among children exposed to fluoride in People’s Republic of China. Ecotox Environ Safe 72(8):2158–2161

    Article  CAS  Google Scholar 

  7. Ando M, Tadano M, Yamamoto S, Tamura K, Asanuma S, Watanabe T, Kondo T, Sakurai S, Ji R, Liang C, Chen X, Hong Z, Cao S (2001) Health effects of fluoride pollution caused by coal burning. Sci Total Environ 271(1–3):107–116

    Article  CAS  PubMed  Google Scholar 

  8. Gui CZ, Ran LY, Li JP, Guan ZZ (2010) Changes of learning and memory ability and brain nicotinic receptors of rat offspring with coal burning fluorosis. Neurotoxicol Teratol 32(5):536–541

    Article  CAS  PubMed  Google Scholar 

  9. Wang YN, Xiao KQ, Liu JL, Dallner G, Guan ZZ (2000) Effect of long term fluoride exposure on lipid composition in rat liver. Toxicology 146(2–3):161–169

    Article  CAS  PubMed  Google Scholar 

  10. Sarkar SD, Maiti R, Ghosh D (2006) Management of fluoride induced testicular disorders by calcium and vitamin-E co-administration in the albino rat. Reprod Toxicol 22(4):606–612

    Article  PubMed  Google Scholar 

  11. Dede O, Varol E, Altinbas A, Varol S (2011) Chronic fluoride exposure has a role in etiology of coronary artery ectasia: sialic acid/glycosaminoglycan ratio. Biol Trace Elem Res 143(2):695–701

    Article  CAS  PubMed  Google Scholar 

  12. Wang ZH, Li XL, Yang ZQ, Xu M (2010) Fluorine-induced apoptosis and lipid peroxidation in human hair follicles in vitro. Biol Trace Elem Res 137(3):280–288

    Article  CAS  PubMed  Google Scholar 

  13. Sondhi H, Gupta ML, Gupta GL (1995) Intestinal effects of sodium fluoride in Swiss Albino mice. Fluoride 28(1):21–24

    CAS  Google Scholar 

  14. Luo Q, Cui HM, Peng X, Fang J, Zuo ZC, Deng JL, Liu J, Deng YB (2013) Suppressive effects of dietary high fluorine on the intestinal development in broiler chickens. Biol Trace Elem Res 156(1–3):153–165

    Article  CAS  PubMed  Google Scholar 

  15. Hopper LV, Cordon JI (2001) Commensal host-bacterial relationships in the gut. Science 292(5519):1115–1118

    Article  Google Scholar 

  16. Suzuki K, Ha SA, Tsuji M, Fagarasan S (2007) Intestinal IgA synthesis: a primitive form of adaptive immunity that regulates microbial communities in the gut. Semin Immunol 19(2):127–135

    Article  CAS  PubMed  Google Scholar 

  17. Abdelqader A, Al-Fataftah AR, Das G (2013) Effects of dietary Bacillus subtilis and inulin supplementation on performance, eggshell quality, intestinal morphology and microbiota composition of laying hens in the late phase of production. Anim Feed Sci Tech 179(1–4):103–111

    Article  CAS  Google Scholar 

  18. Lambert GP (2009) Stress-induced gastrointestinal barrier dysfunction and its inflammatory effects. J Anim Sci 87(14 Suppl):E101–E108

    Article  CAS  PubMed  Google Scholar 

  19. Heijtz RD, Wang SG, Anuar F, Qian Y, Bjorkholm B, Samuelsson A, Hibberd ML, Forssberg H, Pettersson S (2011) Normal gut microbiota modulates brain development and behavior. P Natl Acad Sci USA 108(7):3047–3052

    Article  CAS  Google Scholar 

  20. Kau AL, Ahern PP, Griffin NW, Goodman AL, Gordon JI (2011) Human nutrition, the gut microbiome and the immune system. Nature 474(7351):327–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Maslowski KM, Mackay CR (2011) Diet, gut microbiota and immune responses. Nat Immunol 12(1):5–9

    Article  CAS  PubMed  Google Scholar 

  22. Luo Q, Cui HM, Peng X, Fang J, Zuo ZC, Liu J, Wu BY, Deng YB (2013) The association between cytokines and intestinal mucosal immunity among broiler chickens fed on diets supplemented with fluorine. Biol Trace Elem Res 152(2):212–218

    Article  CAS  PubMed  Google Scholar 

  23. Luo Q, Cui HM, Peng X, Fang J, Zuo ZC, Deng JL, Liu J, Deng YB (2013) Intestinal IgA+ cell numbers as well as IgA, IgG and IgM contents correlate with mucosal humoral immunity of broiler chickens during supplementation with high fluorine in the diets. Biol Trace Elem Res 154(1):62–72

    Article  CAS  PubMed  Google Scholar 

  24. NRC (1994) Nutrient requirements of domestic animals. Nutrient requirements of poultry, 9th edn. National Academy of science, Washington, DC

    Google Scholar 

  25. Tuohy KM, Ziemer CJ, Klinder A, Knobel Y, PoolZobel BL, Gibson GR (2002) A human volunteer study to determine the prebiotic effects of lactulose powder on human colonic microbiota. Microb Ecol Health Dis 14(3):165–173

    Article  Google Scholar 

  26. Satokari RM, Vaughan EE, Akkermans ADL, Saarela M, de Vos WM (2001) Bifidobacterial diversity in human feces detected by genus-specific PCR and denaturing gradient gel electrophoresis. Appl Environ Microbiol 67(2):504–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zoetendal EG, Ben-Amor K, Akkermans ADL, Abee T, de Vos WM (2001) DNA isolation protocols affect the detection limit of PCR approaches of bacteria in samples from the human gastrointestinal tract. Syst Appl Microbiol 24(3):405–410

    Article  CAS  PubMed  Google Scholar 

  28. Kraatz M, Taras D, Manner K, Simon O (2006) Weaning pig performance and faecal microbiota with and without infeed addition of rare earth elements. J Anim Physiol Anim Nutr 90(9–10):361–368

    Article  CAS  Google Scholar 

  29. Walter J, Tannock GW, Tilsala-Timisjarvi A, Rodtong S, Loach DM, Munro K, Alatossava T (2000) Detection and identification of gastrointestinal Lactobacillus species by using denaturing gradient gel electrophoresis and species-specific PCR primers. Appl Environ Microbiol 66(1):297–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gong J, Yu H, Liu T, Gill JJ, Chambers JR, Wheatcroft R, Sabour PM (2008) Effects of zinc bacitracin, bird age and access to range on bacterial microbiota in the ileum and caeca of broiler chickens. J Appl Microbiol 104(5):1372–1382

    Article  CAS  PubMed  Google Scholar 

  31. Awati A, Konstantinov SR, Williams BA, Akkermans ADL, Bosch MW, Smidt H, Verstegen MWA (2005) Effect of substrate adaptation on the microbial fermentation and microbial composition of faecal microbiota of weaning piglets studied in vitro. J Sci Food Agr 85(10):1765–1772

    Article  CAS  Google Scholar 

  32. McCracken VJ, Simpson JM, Mackie RI, Gaskins HR (2001) Molecular ecological analysis of dietary and antibiotic-induced alterations of the mouse intestinal microbiota. J Nutr 131(6):1862–1870

    CAS  PubMed  Google Scholar 

  33. Lu JR, Idris U, Harmon B, Hofacre C, Maurer JJ, Lee MD (2003) Diversity and succession of the intestinal bacterial community of the maturing broiler chicken. Appl Environ Microbiol 69(11):6816–6824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Knarreborg A, Simon MA, Engberg RM, Jensen BB, Tannock GW (2002) Effects of dietary fat source and subtherapeutic levels of antibiotic on the bacterial community in the ileum of broiler chickens at various ages. Appl Environ Microbiol 68(12):5918–5924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kimura N, Mimura F, Nishida S, Kobayashi A (1976) Studies on the relationship between intestinal flora and cecal coccidiosis in chicken. Poult Sci 55(4):1375–1383

    Article  CAS  PubMed  Google Scholar 

  36. Smirnov A, Perez R, Amit-Romach E, Sklan D, Uni Z (2005) Mucin dynamics and microbial populations in chicken small intestine are changed by dietary probiotic and antibiotic growth promoter supplementation. J Nutr 135(2):187–192

    CAS  PubMed  Google Scholar 

  37. Dozois CM, Daigle F, Curtiss R 3rd (2003) Identification of pathogen-specific and conserved genes expressed in vivo by an avian pathogenic Escherichia coli strain. Proc Natl Acad Sci U S A 100(1):247–252

    Article  CAS  PubMed  Google Scholar 

  38. Bourlioux P, Koletzko B, Guarner F, Braesco V (2003) The intestine and its microbiota are partners for the protection of the host: report on the Danone Symposium “The Intelligent Intestine”, held in Paris, june 14, 20021, 2. Am J Clin Nutr 78(4):675–683

    CAS  PubMed  Google Scholar 

  39. Mitsuoka T (1996) Intestinal flora and human health. Asia Pacific J Clin Nutr 5:2–9

    CAS  Google Scholar 

  40. Wittebolle L, Vervaeren H, Verstraete W, Boon N (2008) Quantifying community dynamics of nitrifiers in functionally stable reactors. Appl Environ Microbiol 74(1):286–293

    Article  CAS  PubMed  Google Scholar 

  41. Yachi S, Loreau M (1999) Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc Natl Acad Sci U S A 96(4):1463–1468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zoetendal EG, Collier CT, Koike S, Mackie RI, Gaskins HR (2004) Molecular ecological analysis of the gastrointestinal microbiota: A review. J Nutr 134(2):465–472

    CAS  PubMed  Google Scholar 

  43. Thabet OB, Fardeau ML, Joulian C, Thomas P, Hamdi M, Garcia JL, Ollivier B (2004) Clostridium tunisiense sp. nov., a new proteolytic, sulfur-reducing bacterium isolated from an olive mill wastewater contaminated by phosphogypse. Anaerobe 10(3):185–190

    Article  CAS  PubMed  Google Scholar 

  44. Sun LL, Wang Y, Yu CY, Zhao YQ, Gan YB (2012) Genome sequence of Clostridium tunisiense TJ, isolated from drain sediment from a pesticide factory. J Bacteriol 194(24):6950–6951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Liu J, Cui HM, Peng X, Fang J, Wang HS, Wu BY, Deng YB, Wang KP (2012) High dietary fluorine induction of oxidative damage in the cecal tonsil of broiler chickens. Fluoride 45(1):47–52

    Google Scholar 

Download references

Acknowledgments

The study was supported by the program for Changjiang Scholars and Innovative University Research Teams (IRT 0848), and the Shuangzhi Project of Sichuan Agricultural University (03570327; 03571198).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hengmin Cui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Q., Cui, H., Peng, X. et al. Dietary High Fluorine Alters Intestinal Microbiota in Broiler Chickens. Biol Trace Elem Res 173, 483–491 (2016). https://doi.org/10.1007/s12011-016-0672-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-016-0672-9

Keywords

Navigation