Skip to main content
Log in

Correlation Analysis of Exercise-Induced Changes in Plasma Trace Element and Hormone Levels During Incremental Exercise in Well-Trained Athletes

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

This study analyzes the relationship between hormonal changes induced by exercise and variations in trace elements associated with oxidative stress during incremental exercise. Nineteen well-trained endurance athletes performed a cycle ergometer test: after a warm-up of 10 min at 2.0 W kg−1, workload increased by 0.5 W kg−1 every 10 min until exhaustion. The analysis was controlled for prior diet and activity patterns, levels of exercise training, and time of day (circadian rhythms). Whole blood lactate concentration and plasma concentrations of ions (Zn, Se, Mn, and Co), insulin, glucagon, aldosterone, thyroid stimulating hormone (TSH), calcitonin, and parathyroid hormone (PTH) were measured at rest; at the end of each stage; and 3, 5, and 7 min post-exercise. The statistical analysis involved paired non-parametric tests and correlation coefficients. No significant differences were found in Mn or Co levels as a function of exercise intensity. Zn and Se levels at the end of the exercise protocol and over the recovery time were significantly different to baseline. Further, Zn levels were significantly correlated with aldosterone, calcitonin, and PTH levels, while Se levels were associated with aldosterone, calcitonin, and TSH levels. Our results indicate several different patterns of association between acute changes in hormone concentrations and variations in trace element concentrations related to oxidative stress during submaximal exercise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Siddiqui K, Bawazeer N, Joy SS (2014) Variation in macro and trace elements in progression of type 2 diabetes. Scientific World Journal. doi:10.1155/2014/461591

    Google Scholar 

  2. Kaur B, Henry J (2014) Micronutrient status in type 2 diabetes: a review. Adv Food Nutr Res 71:55–100. doi:10.1016/B978-0-12-800270-4.00002-X

    Article  CAS  PubMed  Google Scholar 

  3. Cayir A, Doneray H, Kurt N, Orbak Z, Kaya A, Turan MI, Yildirim A (2014) Thyroid functions and trace elements in pediatric patients with exogenous obesity. Biol Trace Elem Res 157(2):95–100. doi:10.1007/s12011-013-9880-8

    Article  CAS  PubMed  Google Scholar 

  4. Giray B, Arnaud J, Sayek I, Favier A, Hincal F (2010) Trace elements status in multinodular goiter. J Trace Elem Med Biol 24(2):106–110. doi:10.1016/j.jtemb.2009.11.003

    Article  CAS  PubMed  Google Scholar 

  5. Soldin OP, Aschner M (2007) Effects of manganese on thyroid hormone homeostasis: potential links. Neurotoxicology 28(5):951–956

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Meeker JD, Rossano MG, Protas B, Diamond MP, Puscheck E, Daly D, Paneth N, Wirth JJ (2009) Multiple metals predict prolactin and thyrotropin (TSH) levels in men. Environ Res 109(7):869–873. doi:10.1016/j.envres.2009.06.004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Baltaci AK, Mogulkoc R, Bediz CS, Kul A, Ugur A (2003) Pinealectomy and zinc deficiency have opposite effects on thyroid hormones in rats. Endocr Res 29(4):473–481

    Article  PubMed  Google Scholar 

  8. Ertek S, Cicero AF, Caglar O, Erdogan G (2010) Relationship between serum zinc levels, thyroid hormones and thyroid volume following successful iodine supplementation. Hormones (Athens) 9(3):263–268

    Article  Google Scholar 

  9. Bucci I, Napolitano G, Giuliani C, et al. (1999) Zinc sulphate supplementation improves thyroid function in hypozincemic Down children. Biol Trace Elem Res 67:257–268

    Article  CAS  PubMed  Google Scholar 

  10. Miao X, Sun W, Fu Y, Miao L, Cai L (2013) Zinc homeostasis in the metabolic syndrome and diabetes. Front Med 7(1):31–52. doi:10.1007/s11684-013-0251-9

    Article  PubMed  Google Scholar 

  11. Obeid O, Elfakhani M, Hlais S, Iskandar M, Batal M, Mouneimne Y, Adra N, Hwalla N (2008) Plasma copper, zinc, and selenium levels and correlates with metabolic syndrome components of Lebanese adults. Biol Trace Elem Res 123(1–3):58–65. doi:10.1007/s12011-008-8112-0

    Article  CAS  PubMed  Google Scholar 

  12. Steinbrenner H (2013) Interference of selenium and selenoproteins with the insulin-regulated carbohydrate and lipid metabolism. Free Radic Biol Med 65:1538–1547. doi:10.1016/j.freeradbiomed.2013.07.016

    Article  CAS  PubMed  Google Scholar 

  13. Taylor CG (2005) Zinc, the pancreas, and diabetes: insights from rodent studies and future directions. Biometals 18(4):305–312

    Article  CAS  PubMed  Google Scholar 

  14. Rungby J (2010) Zinc, zinc transporters and diabetes. Diabetologia 53(8):1549–1551. doi:10.1007/s00125-010-1793-x

    Article  CAS  PubMed  Google Scholar 

  15. McMaster D, McCrum E, Patterson CC, Kerr MM, O’Reilly D, Evans AE, Love AH (1992) Serum copper and zinc in random samples of the population of Northern Ireland. Am J Clin Nutr 56(2):440–446

    CAS  PubMed  Google Scholar 

  16. Calero M, Sampalo A, Millán JE, Freire J, Senra A, Zamora E (1989) Changes in the activity of plasma renin and aldosterone induced by a pattern of increasing administration of zinc sulphate in normotensive individuals. Med Clin (Barc) 20;92(19):729–732

    Google Scholar 

  17. Tubek S (2006) Selected zinc metabolism parameters in relation to insulin, renin-angiotensin-aldosterone system, and blood pressure in healthy subjects: gender differences. Biol Trace Elem Res 114(1–3):65–72

    Article  CAS  PubMed  Google Scholar 

  18. Chen SM, Kuo CD, Ho LT, Liao JF (2002) Effect of hypothyroidism on intestinal zinc absorption and renal zinc disposal in five-sixth nephrectomized rats. Jpn J Physiol 55:211–219

    Article  Google Scholar 

  19. Leal-Cerro A, Gippini A, Amaya MJ, Lage M, Mato JA, Dieguez C, Casanueva FF (2003) Mechanisms underlying the neuroendocrine response to physical exercise. J Endocrinol Invest 26(9):879–885

    Article  CAS  PubMed  Google Scholar 

  20. Speich M, Pineau A, Ballereau F (2001) Minerals, trace elements and related biological variables in athletes and during physical activity. ClinChimActa 312(1–2):1–11

    CAS  Google Scholar 

  21. Birds S, Davidson R (1997) Guidelines for the physiological testing of athletes. British Association of Sport and Exercise Sciences, Leeds, pp. 59–65

    Google Scholar 

  22. Poulsen OM1, Christensen JM, Sabbioni E, Van der Venne MT (1994) Trace element reference values in tissues from inhabitants of the European Community. V. Review of trace elements in blood, serum and urine and critical evaluation of reference values for the Danish population. Sci Total Environ 141(1–3):197–215

    Article  CAS  PubMed  Google Scholar 

  23. Ohno H, Yamashita K, Doi R, Yamamura K, Kondo T, Taniguchi N (1985) Exercise-induced changes in blood zinc and related proteins in humans. J ApplPhysiol 58:1453–1458

    CAS  Google Scholar 

  24. Savas S, Senel O, Okan I, Aksu ML (2007) Effect of acute maximal aerobic exercise upon the trace element levels in blood. Neuro Endocrinol Lett 28:675–680

    CAS  PubMed  Google Scholar 

  25. Marrella M, Guerrini F, Solero PL, Tregnaghi PL, Schena F, Velo GP, Marrella M, Guerrini F, Solero PL, Tregnaghi PL, Schena F (1993) Blood copper and zinc changes in runners after a marathon. J Trace Elem Electrolytes Health Dis 7:248–250

    CAS  PubMed  Google Scholar 

  26. Buchman AL, Keen C, Commisso J, Killip D, Ou CN, Rognerud CL, Dennis K, Dunn JK (1998) The effect of a marathon run on plasma and urine mineral and metal concentrations. J Am Coll Nutr 17:124–127

    Article  CAS  PubMed  Google Scholar 

  27. González-Haro C, Soria M, López-Colón JL, Llorente MT, Escanero JF (2011) Plasma trace elements levels are not altered by submaximal exercise intensities in well-trained endurance euhydrated athletes. J Trace Elem Med Biol 25:54–58

    Article  Google Scholar 

  28. Anderson RA, Plansky MM, Bryden NA (1984) Strenuous running: acute effects on chromium, copper, zinc and selected clinical variables in urine and serum of male runners. Biol Trace Elem Res 6:327–336

    Article  CAS  PubMed  Google Scholar 

  29. Van RAM, Hall MT, Dohm GL, Bray J, Pories WJ (1986) Changes in zinc metabolism following exercise in human subjects. Biol Trace Elem Res 10:99–105

    Article  Google Scholar 

  30. Volpe SL, Lowe NM, Woodhouse LR, King JC (2007) Effect of maximal exercise on the short-term kinetics of zinc metabolism in sedentary men. Br J Sports Med 41:156–161

    Article  PubMed Central  PubMed  Google Scholar 

  31. Hägglöf B, Hallmans G, Holmgren G, Ludvigsson J, Falkmer S (1983) Prospective and retrospective studies of zinc concentrations in serum, blood clots, hair and urine in young patients with insulin-dependent diabetes mellitus. Acta Endocrinol (Copenh) 102(1):88–95

    Google Scholar 

  32. Schlienger JL, Grunenberger F, Maier EA, Simon C, Chabrier G, Leroy MJ (1988) Disorders of plasma trace elements in diabetes. Relation to blood glucose equilibrium. Presse Med 17(21):1076–1079

    CAS  PubMed  Google Scholar 

  33. Arreola F, Paniagua R, Díaz-Bensussen S, Urquieta B, López-Montaño E, Partida-Hernández G, Villalpando S (1990) Bone mineral content, 25-hydroxycalciferol and zinc serum levels in insulin-dependent (type I) diabetic patients. Arch Invest Med (Mex) 21(2):195–199

    CAS  Google Scholar 

  34. Mateo MC, Bustamante JB, Cantalapiedra MA (1978) Serum, zinc, copper and insulin in diabetes mellitus. Biomedicine 29(2):56–58

    CAS  PubMed  Google Scholar 

  35. D’Ocon C, Alonso de Armiño V, Frasquet I (1987) Levels of Zn and Cu in the serum of a diabetic population. Rev Esp Fisiol 43(3):335–338

    PubMed  Google Scholar 

  36. Kljai K, Runje R (2001) Selenium and glycogen levels in diabetic patients. Biol Trace Elem Res 83:223–229. doi:10.1385/BTER:83:3:223

    Article  CAS  PubMed  Google Scholar 

  37. Whiting PH, Kalansooriya A, Holbrook I, Haddad F, Jennings PE (2008) The relationship between chronic glycaemic control and oxidative stress in type 2 diabetes mellitus. Br J Biomed Sci 65(2):71–74

  38. Bleys J, Navas-Acien A, Guallar E (2007) Serum selenium and diabetes in U.S. adults. Diabetes Care 30:829–834. doi:10.2337/dc06-1726

    Article  CAS  PubMed  Google Scholar 

  39. Laclaustra M, Navas-Acien A, Stranges S, Ordovas JM, Guallar E (2009) Serum selenium concentrations and diabetes in U.S. adults: National Health and Nutrition Examination Survey (NHANES) 2003–2004. Environ Health Perspect 117:1409–1413

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Czernichow S, Couthouis A, Bertrais S, Vergnaud AC, Dauchet L, Galan P, Hercberg S (2006) Antioxidant supplementation does not affect fasting plasma glucose in the Supplementation with Antioxidant Vitamins and Minerals (SU.VI.MAX) study in France: association with dietary intake and plasma concentrations. Am J Clin Nutr 84:395–399

    CAS  PubMed  Google Scholar 

  41. Adewumi MT, Njoku CH, Saidu Y, Abubakar MK, Shehu RA, Bilbis LS (2007) Serum chromium, copper and manganese levels of diabetic subjects in Katsina, Nigeria. Asian J Biochem 2:284–288

    CAS  Google Scholar 

  42. Anetor JI, Asiribo OA, Adedapo KS, Akingbola TS, Olorunnisola OS, Adeniyi FA (2007) Increased plasma manganese, partially reduced ascorbate, 1 and absence of mitochondrial oxidative stress in type 2 diabetes mellitus: implications for the superoxide uncoupling protein 2 (UCP-2) pathway. Biol Trace Elem Res 120:19–27

    Article  CAS  PubMed  Google Scholar 

  43. Flores CR, Puga MP, Wróbel K, Sevilla EG, Wróbel K (2011) Trace elements status in diabetes mellitus type 2: possible role of the interaction between molybdenum and copper in the progress of typical complications. Diabetes Res ClinPract 91:333–341

    Article  CAS  Google Scholar 

  44. Tubek S (2006) Selected zinc metabolism parameters in relation to insulin, renin-angiotensin-aldosterone system, and blood pressure in healthy subjects: gender differences. Biol Trace Elem Res 114(1–3):65–72

    Article  CAS  PubMed  Google Scholar 

  45. Finley JW, Penland JG, Pettit RE, Davis CD (2003) Dietary manganese intake and type of lipid do not affect clinical or neuropsychological measures in healthy young women. J Nutr 133:2849–2856

    CAS  PubMed  Google Scholar 

  46. Ortega RM, Rodríguez-Rodríguez E, Aparicio A, Jiménez AI, López-Sobaler AM, González-Rodríguez LG, Andrés P (2012) Poor zinc status is associated with increased risk of insulin resistance in Spanish children. Br J Nutr 107(3):398–404. doi:10.1017/S0007114511003114

    Article  CAS  PubMed  Google Scholar 

  47. Akbaraly TN, Arnaud J, Rayman MP, Hininger-Favier I, Roussel AM, Berr C, Fontbonne A (2010) Plasma selenium and risk of dysglycemia in an elderly French population: results from the prospective Epidemiology of Vascular Ageing Study. NutrMetab (Lond) 7:1–27

    Google Scholar 

  48. Hagberg JM, Seals DR, Yerg JE, Gavin J, Gingerich R, Premachandra B, Holloszy JO ((1988)) Metabolic responses to exercise in young and older athletes and sedentary men. J Appl Physiol (1985) 65(2):900–908

  49. Horton TJ, Grunwald GK, Lavely J, Donahoo WT ((2006)) Glucose kinetics differ between women and men, during and after exercise. J Appl Physiol (1985) 100(6):1883–1894

  50. Marques LF, Donangelo CM, Franco JG, Pires L, Luna AS, Casimiro-Lopes G, Lisboa PC, Koury JC (2011) Plasma zinc, copper, and serum thyroid hormones and insulin levels after zinc supplementation followed by placebo in competitive athletes. Biol Trace Elem Res 142(3):415–423. doi:10.1007/s12011-010-8821-z

    Article  CAS  PubMed  Google Scholar 

  51. Kenefick RW, Maresh CM, ArmstrongLE RD, Echegaray ME, Castellani E (2007) Rehydration with fluid of varying tonicities: effects on fluid regulatory hormones and exercise performance in the heat. J Appl Physiol 102:1899–1905

    Article  CAS  PubMed  Google Scholar 

  52. Hoffman JR, Ratamess NA, Kang J, Rashti SL, Kelly N, Gonzalez AM, Stec M, Anderson S, Bailey BL, Yamamoto LM, Hom LL, Kupchak BR, Faigenbaum AD, Maresh CM (2010) Examination of the efficacy of acute L-alanyl-L-glutamine ingestion during hydration stress in endurance exercise. J IntSoc Sports Nutr 3:7–8. doi:10.1186/1550-2783-7-8

    Google Scholar 

  53. Latman NS, Sorensen JR, Kishore V (1984) Effect of aldosterone on the serum zinc, copper, and magnesium concentrations in the rat. Horm Res 20(3):192–196

    Article  CAS  PubMed  Google Scholar 

  54. Thomas M, Vidal A, Bhattacharya SK, Ahokas RA, Johnson PL, Sun Y (2006) Hypozincemia and oxidative stress in rats with chronic aldosteronism. J Investig Med 54(Suppl 1):S264

    Google Scholar 

  55. Nishiyama S, Nakamura K, Konishi Y (1987) Effect of selenium on blood pressure, urinary sodium excretion and plasma aldosterone in cadmium-treated male rats. Arch Toxicol 59(5):365–370

    Article  CAS  PubMed  Google Scholar 

  56. GarcíaZozaya JL, Padilla Viloria M (1997) Alterations of calcium, magnesium, and zinc in essential hypertension: their relation to the renin-angiotensin-aldosterone system. Invest Clin 38(Suppl 2):27–40

    Google Scholar 

  57. Cunningham J, Segre GV, Slatopolsky E, Avioli L (1985) Effect of heavy exercise on mineral metabolism and calcium regulating hormones in humans. Calcif Tissue Int 37(6):598–601

    Article  CAS  PubMed  Google Scholar 

  58. O’Neill ME, Wilkinson M, Robinson BG, McDowall DB, Cooper KA, Mihailidou AS, Frewin DB, Clifton-Bligh P, Hunyor SN (1990) The effect of exercise on circulating immunoreactive calcitonin in men. Horm Metab Res 22(10):546–550

    Article  PubMed  Google Scholar 

  59. Rong H, Berg U, Tørring O, Sundberg CJ, Granberg B, Bucht E (1997) Effect of acute endurance and strength exercise on circulating calcium-regulating hormones and bone markers in young healthy males. Scand J Med Sci Sports 7(3):152–159

    Article  CAS  PubMed  Google Scholar 

  60. Nishiyama S, Nakamura T, Higashi A, Matsuda I (1991) Infusion of zinc inhibits serum calcitonin levels in patients with various zinc status. Calcif Tissue Int 49(3):179–182

    Article  CAS  PubMed  Google Scholar 

  61. Gur A, Colpan L, Cevik R, Nas K, JaleSarac A (2005) Comparison of zinc excretion and biochemical markers of bone remodelling in the assessment of the effects of alendronate and calcitonin on bone in postmenopausal osteoporosis. ClinBiochem 38(1):66–72

    CAS  Google Scholar 

  62. Zagrodzki P, Nicol F, Arthur JR, Słowiaczek M, Walas S, Mrowiec H, Wietecha-Posłuszny R (2010) Selenoenzymes, laboratory parameters, and trace elements in different types of thyroid tumor. Biol Trace Elem Res 134(1):25–40. doi:10.1007/s12011-009-8454-2

    Article  CAS  PubMed  Google Scholar 

  63. Bouassida A, Latiri I, Bouassida S, Zalleg D, Zaouali M, Feki Y, Gharbi N, Zbidi A, Tabka Z (2006) Parathyroid hormone and physical exercise: a brief review. J Sports Sci Med 5(3):367–374

    PubMed Central  PubMed  Google Scholar 

  64. Nishiyama S, Tomoeda S, Ohta T, Higuch I, Matsuda I (1998) Differences in basal and postexercise osteocalcin levels in athletic and nonathletic humans. Calcif Tissue Int 43:150–154

    Article  Google Scholar 

  65. Klausen T, Breum L, Sorensen HA, Schifter S, Sonne B (1993) Plasma levels of parathyroid hormone, vitamin D, calcitonin, and calcium in association with endurance exercise. Calcif Tissue Int 52:205–208

    Article  CAS  PubMed  Google Scholar 

  66. Ljunghall S, Joborn H, Roxin L, Skarfors E, Wide L, Lithell H (1998) Increase in serum parathyroid hormone levels after prolonged physical exercise. Med Sci Sports Exerc 20:122–125

    Article  Google Scholar 

  67. Guillemant J, Accarie C, Peres G, Guillemant S (2004) Acute effects of an oral calcium load on markers of bone metabolism during endurance cycling exercise in male athletes. Calcif Tissue Int 74:407–414

    Article  CAS  PubMed  Google Scholar 

  68. Bouassida A, Zalleg D, ZaoualiAjina M, Gharbi N, Duclos M, Richalet J, Tabka Z (2003) Parathyroid hormone concentrations during and after two periods of high intensity exercise with and without an intervening recovery period. Eur J ApplPhysiol 88(4–5):339–344

    CAS  Google Scholar 

  69. Bouglé DL, Sabatier JP, Guaydier-Souquières G, Guillon-Metz F, Laroche D, Jauzac P, Bureau F (2004) Zinc status and bone mineralisation in adolescent girls. J Trace Elem Med Biol 18(1):17–21

    Article  PubMed  Google Scholar 

  70. El Tayeb AA, Abd El-Mottaleb NA, Abdel Aziz EA (2009) Relationship between serum parathyroid hormone and trace elements (serum zinc and magnesium) in hemodialyzed chronic renal failure children. Biol Trace Elem Res 128(2):128–134. doi:10.1007/s12011-008-8265-x

    Article  CAS  PubMed  Google Scholar 

  71. Dashti-Khavidaki S, Khalili H, Vahedi SM, Lessan-Pezeshki M (2010) Serum zinc concentrations in patients on maintenance hemodialysis and its relationship with anemia, parathyroid hormone concentrations and pruritus severity. Saudi J Kidney Dis Transpl 21(4):641–645

    PubMed  Google Scholar 

  72. González-Pérez JM, González-Reimers E, Durán-CastellónMdel C, Santolaria-Fernández F, Galindo-Martín L, RosVilamajó R, de La Vega-Prieto MJ, Viña-Rodríguez J, Abreu-González P (2011) Relative and combined effects of selenium, protein deficiency and ethanol on bone. J Trace Elem Med Biol 25(2):113–117. doi:10.1016/j.jtemb.2011.01.002

    Article  PubMed  Google Scholar 

  73. Gong K, Gagner M, Pomp A, Almahmeed T, Bardaro SJ (2008) Micronutrient deficiencies after laparoscopic gastric bypass: recommendations. Obes Surg 18(9):1062–1066. doi:10.1007/s11695-008-9577-9

    Article  PubMed  Google Scholar 

  74. Ingen-Housz-Oro S, Blanchet-Bardon C, Vrillat M, Dubertret L (2004) Vitamin and trace metal levels in recessive dystrophic epidermolysis bullosa. J Eur Acad Dermatol Venereo 18(6):649–653

    Article  CAS  Google Scholar 

  75. Zhaojun W, Lin W, Zhenyong W, Jian W, Ran L (2013) Effects of manganese deficiency on serum hormones and biochemical markers of bone metabolism in chicks. J Bone Miner Metab 31(3):285–292. doi:10.1007/s00774-012-0417-6

  76. Telesforo P, Procaccini DA, Muscio A, Genua G (1986) Serum concentration of T3, T4, FT3, FT4, TSH during cycloergometer muscular exercise. Quad Sclavo Diagn 22(1):115–120

    CAS  PubMed  Google Scholar 

  77. Ciloglu F, Peker I, Pehlivan A, Karacabey K, Ilhan N, Saygin O, Ozmerdivenli R (2005) Exercise intensity and its effects on thyroid hormones. Neuro Endocrinol Lett 26(6):830–834

    CAS  PubMed  Google Scholar 

  78. Smallridge R, Whorton NE, Burman K, Ferguson E (1985) Effects of exercise and physical fitness on the pituitary-thyroid axis and on prolactin secretion in male runners. Metabolism 34(10):949–954

    Article  CAS  PubMed  Google Scholar 

  79. Licata G, Scaglione R, Novo S, Dichiara M, Di Vincenzo D (1984) Behaviour of serum T3, rT3, TT4, FT4 and TSH levels after exercise on a bicycle ergometer in healthy euthyroid male young subjects. Boll Soc Ital Biol Sper 60(4):753–759

    CAS  PubMed  Google Scholar 

  80. Schmid P, Wolf W, Pilger E, Schwaberger G, Pessenhofer H, Pristautz H, Leb G (1982) TSH, T3, rT3 and fT4 in maximal and submaximal physical exercise. Eur J Appl Physiol Occup Physiol 48(1):31–39

    Article  CAS  PubMed  Google Scholar 

  81. Drutel A, Archambeaud F, Caron P (2013) Selenium and the thyroid gland: more good news for clinicians. Clin Endocrinol (Oxf) 78(2):155–164. doi:10.1111/cen.12066

    Article  CAS  Google Scholar 

  82. Schomburg L (2011) (2011) Selenium, selenoproteins and the thyroid gland: interactions in health and disease. Nat Rev Endocrinol 8(3):160–171. doi:10.1038/nrendo.2011.174

    Article  PubMed  Google Scholar 

  83. Köhrle J (2013) Selenium and the thyroid. Curr Opin Endocrinol Diabetes Obes 20(5):441–448. doi:10.1097/01.med.0000433066.24541.88

    Article  PubMed  Google Scholar 

  84. Combs GF, Midthune DN, Patterson K, Canfield W, Hill A, Levander O, Taylor P, Moler J, Patterson B (2009) Effects of selenomethionine supplementation on selenium status and thyroid hormone concentrations in healthy adults. Am J ClinNutr 89(6):1808–1814. doi:10.3945/ajcn.2008.27356

    CAS  Google Scholar 

  85. Rayman MP, Thompson AJ, Bekaert B, Catterick J, Galassini R, Hall E, Warren-Perry M, Beckett GJ (2008) Randomized controlled trial of the effect of selenium supplementation on thyroid function in the elderly in the United Kingdom. Am J Clin Nutr 87(2):370–178

    CAS  PubMed  Google Scholar 

  86. Ravaglia G, Forti P, Maioli F, Nesi B, Pratelli L, Savarino L, Cucinotta D, Cavalli G (2000) Blood micronutrient and thyroid hormone concentrations in the oldest-old. J ClinEndocrinolMetab 85(6):2260–2565

    Article  CAS  Google Scholar 

  87. EskesSA EE, Fliers E, Birnie E, Hollenbach B, Schomburg L, Köhrle J, Wiersinga WM (2014) Selenite supplementation in euthyroid subjects with thyroid peroxidase antibodies. Clin Endocrinol (Oxf) 80(3):444–451. doi:10.1111/cen.12284

    Article  Google Scholar 

  88. Marques LF, Donangelo CM, Franco JG, Pires L, Luna AS, Casimiro-Lopes G, Lisboa PC, Koury JC (2011) Plasma zinc, copper, and serum thyroid hormones and insulin levels after zinc supplementation followed by placebo in competitive athletes. Biol Trace Elem Res 142(3):415–423. doi:10.1007/s12011-010-8821-z

    Article  CAS  PubMed  Google Scholar 

  89. Kilic M, Baltaci AK, Gunay M, Gökbel H, Okudan N, Cicioglu I (2006) The effect of exhaustion exercise on thyroid hormones and testosterone levels of elite athletes receiving oral zinc. NeuroEndocrinolLett 27(1–2):247–252

    CAS  Google Scholar 

  90. Cayir A, Doneray H, Kurt N, Orbak Z, Kaya A, Turan MI, Yildirim A (2014) Thyroid functions and trace elements in pediatric patients with exogenous obesity. Biol Trace Elem Res 157(2):95–100. doi:10.1007/s12011-013-9880-8

    Article  CAS  PubMed  Google Scholar 

  91. Soldin OP, Aschner M (2007) Effects of manganese on thyroid hormone homeostasis: potential links. Neurotoxicology 28(5):951–956

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. Yorita Christensen KL (2013) Metals in blood and urine, and thyroid function among adults in the United States 2007-2008. Int J Hyg Environ Health 216(6):624–632. doi:10.1016/j.ijheh.2012.08.005

    Article  CAS  PubMed  Google Scholar 

  93. Swennen B, Buchet JP, Stánescu D, Lison D, Lauwerys R (1993) Epidemiological survey of workers exposed to cobalt oxides, cobalt salts, and cobalt metal. Br J Ind Med 50(9):835–842

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Compliance with Ethical Standards

The study protocol was approved by the Ethics Committee of the University of Zaragoza and conducted in accordance with the Declaration of Helsinki. The participants were informed about possible benefits and risks associated with the study before they provided their written informed consent to participate.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marisol Soria.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soria, M., Anson, M. & Escanero, J.F. Correlation Analysis of Exercise-Induced Changes in Plasma Trace Element and Hormone Levels During Incremental Exercise in Well-Trained Athletes. Biol Trace Elem Res 170, 55–64 (2016). https://doi.org/10.1007/s12011-015-0466-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-015-0466-5

Keywords

Navigation