Skip to main content
Log in

Elemental Composition in Two Water Beetles (Dytiscus thianschanicus, Dytiscus persicus) (Dytiscidae: Coleoptera) as Revealed by WDXRF Spectroscopy

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

In this study, concentrations of 34 different inorganic elements between Dytiscus thianschanicus and Dytiscus persicus collected from the environs of five Turkish cities were measured by wavelength dispersive X-ray fluorescence spectrometry. The two species were found to differ in both elemental composition and amount. The concentrations of Na, As, Br and Ba were found to differ significantly between D. thianschanicus and D. persicus. In addition, Mn and I concentrations for D. thianschanicus and Si, Zn for D. persicus between males and females were statistically significant. It is thought that metabolic differences between males and females of these insects may be behind the observed differences in these species. Differences in elemental composition were also seen between beetles from different localities, and the content of non-essential elements in an insect’s body may be a useful measure of the level of these elements in their habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Nilsson AN (2001) World catalogue of insects. volume 3. Dytiscidae (Coleoptera). Apollo Books, Stenstrup, p 395

    Google Scholar 

  2. Borror DJ, De Long DM, Triplehorn CA (1981) An introduction to the study of insects. Hold, Rinehard and Winston, USA, p 827

    Google Scholar 

  3. Spangler PJ (1981) Aquatic biota of tropical South America, part 1: Arthropoda. San Diego State University, San Diego, California, p 323

    Google Scholar 

  4. Booth RG, Cox ML, Madge RB (1990) IIE guides to insects of importance to man. 3. Coleoptera. The University Press, Cambridge, p 369

    Google Scholar 

  5. Roughley RE (1990) A systematic revision of species of Dytiscus Linnaeus (Coleoptera: Dytiscidae). Part 1. Classification based on adult stage. Quaest Entomol 26:383–557

    Google Scholar 

  6. Nilsson AN (2003) Family Dytiscidae. In: Löbl I, Smetana A (eds) Catalogue of Palaearctic Coleoptera, vol 1, Archostemata–Myxophaga–Adephaga. Apollo Boks, Stenstrup, pp 35–78

    Google Scholar 

  7. Nilsson, AN (2010) Catalogue of Palaearctic Coleoptera: Noteridae and Dytiscidae. Available from: http://www.emg.umu.se/biginst/andersn/Cat_main.htm

  8. Jolivet P, Petitpierre E, Hasiao TH (2003) Biology of Chrysomelidae. Series Entomologicia, 42. MA: Kluwer Academic Publishers, Dordrecht, p 606

    Google Scholar 

  9. Arakawa Y, Moriyama M, Arakawa Y (2004) Liver cirrhosis and metabolism (sugar, protein, fat and trace elements). Hepatol Res 30:46–58

    Article  Google Scholar 

  10. Mahan D, Shields R (1998) Macro- and micromineral composition of pigs from birth to 145 kilograms of body weight. J Anim Sci 76(2):506–512

    PubMed  CAS  Google Scholar 

  11. Husted S, Mikkelsen B, Jensen J, Nielsen N (2004) Elemental fingerprint analysis of barley (Hordeum vulgare) using inductively coupled plasma mass spectrometry, isotope-ratio mass spectrometry, and multivariate statistics. Anal Bioanal Chem 378(1):171–182

    Article  PubMed  CAS  Google Scholar 

  12. Finney L, O'Halloran T (2003) Transition metal speciation in the cell: insights from the chemistry of metal ion receptors. Science 300(5621):931–936

    Article  PubMed  CAS  Google Scholar 

  13. Cousins RJ, Liuzzi JP, Lichten LA (2006) Mammalian zinc transport, trafficking, and signals. J Biol Chem 281(34):24085–24089

    Article  PubMed  CAS  Google Scholar 

  14. Dunn L, Rahmanto Y, Richardson D (2007) Iron uptake and metabolism in the new millennium. Trends Cell Biol 17(2):93–100

    Article  PubMed  CAS  Google Scholar 

  15. Studziński T, Matras J, Grela ER, Valvedre Piedra JL, Truchliński J, Tatara MR (2006) Minerals: functions, requirements, excessive intake and toxicity. In: Mosenthin R, Zentec J, Żebrowska T (eds) Biology of nutrition in growing animals. Elsevier, New York, pp 467–509

    Chapter  Google Scholar 

  16. Van Grieken RE, Markowicz AA (1993) Handbook of X-ray spectrometry. Marcel Dekker, New York, p 76

    Google Scholar 

  17. Ferreira EMM, L'Amoura RJA, Carmo JMN, Mantovano JL, Carvalho MS (2004) Determination of Hg from Cu concentrates by X-ray fluorescence through preconcentration on polyurethane foam. Microchem J 78:1–5

    Article  Google Scholar 

  18. Queralt I, Ovejero M, Carvalho ML, Marques AF, Llabrés JM (2005) Quantitative determination of essential and trace element content of medicinal plants and their infusions by XRF and ICP techniques. X-ray Spectrom 34:213–217

    Article  CAS  Google Scholar 

  19. Perring L, Blanc J (2008) Faster measurement of minerals in milk powders: comparison of a high power wavelength dispersive XRF system with ICP-AES and potentiometry reference methods. Food Anal Methods 1(3):205–213

    Article  Google Scholar 

  20. Shibata Y, Suyama J, Kitano M, Nakamura T (2009) X-ray fluorescence analysis of Cr, As, Se, Cd, Hg, and Pb in soil using pressed powder pellet and loose powder methods. X-ray Spectrom 38(5):410–416

    Article  CAS  Google Scholar 

  21. Karabulut A, Aslan İ, Dumlupınar R, Tıraşoğlu E, Budak G (2005) Determination of trace elements in three Chrysomela (Coleoptera, Chrysomelidae) species by EDXRF analyses. J Quant Spectrosc Ra 94(3–4):373–378

    Article  CAS  Google Scholar 

  22. Margui E, Hidalgo M, Queralt I (2005) Multielemental fast analysis of vegetation samples by wavelength dispersive X-ray fluorescence spectrometry: possibilities and drawbacks. Spectrochim Acta B 60(9–10):1363–1372

    Article  Google Scholar 

  23. Dumlupınar R, Demir F, Şişman T, Budak G, Karabulut A, Erman ÖK, Baydaş E (2006) Trace element changes during hibernation of Drosophila melanogaster by WDXRF analyses at chilling temperature. J Quant Spectrosc Ra 102(3):492–498

    Article  Google Scholar 

  24. Erman ÖK, Gürol A, Dumlupınar R (2006) Determination of inorganic element differences between male and female of a water beetle species, Agabus bipustulatus (Dytiscidae: Coleoptera) by WDXRF Analyses. Fresen Environ Bull 15(7):697–703

    CAS  Google Scholar 

  25. Dumlupınar R, Demir F, Budak G, Karabulut A, Kadi N, Karakurt H, Erdal S (2007) Determination of replacement of some inorganic elements in pulvinus of bean (Phaseolus vulgaris cv. Gina 2004) at chilling temperature by the WDXRF spectroscopic technique. J Quant Spectrosc Ra 103(2):331–339

    Article  Google Scholar 

  26. Erdal S, Dumlupınar R, Cakmak T, Taşkın M (2010) Determination of some inorganic element concentration changes in germinating chickpea seeds exposed to progesterone and beta-estradiol by using wdxrf spectroscopic technique. Fresen Environ Bull 19:507–515

    CAS  Google Scholar 

  27. Erman ÖK, Gürol A (2007) Determination of inorganic element concentrations between two Laccophilus species (Dytiscidae: Coleoptera) by energy dispersive X-ray fluorescence (WDXRF) spectrometry. Fresen Environ Bull 16(12b):1627–1635

    CAS  Google Scholar 

  28. Bennett JP (2008) Discrimination of lichen genera and species using element concentrations. Lichenologist 40(2):135–151

    Article  Google Scholar 

  29. Pashkova GV (2009) X-ray fluorescence determination of element contents in milk and dairy products. Food Anal Methods 2(4):303–310

    Article  Google Scholar 

  30. Yigit D, Baydaş E, Güleryüz M (2009) Elemental analysis of various cherry fruits by wavelength dispersive X-ray fluorescence spectrometry. Asian J Chem 21(4):2935–2942

    CAS  Google Scholar 

  31. Aguirre C, Chavez T, Garcia P, Raya JC (2007) Silicon in live organisms. Interciencia 32(8):504–509

    Google Scholar 

  32. Tubek S (2007) Zinc supplementation or regulation of its homeostasis: advantage and threats. Biol Trace Elem Res 119(1):1–9

    Article  PubMed  CAS  Google Scholar 

  33. Knor IB, Naumova EN, Trounova VA, Dolbnya IP, Zolotarev KV (1995) Biological monitoring of meadow moths by SR-XRF technique. Nucl Instrum Meth A 359:324–326

    Article  CAS  Google Scholar 

  34. Hare L (1992) Aquatic insects and trace metals: bioavailability, bioaccumulation, and toxicity. Crit Rev Toxicol 22(5/6):327–369

    Article  PubMed  CAS  Google Scholar 

  35. Dillon PJ, Reid RA, Girard R (1986) Changes in the chemistry of lakes near sudbury, ontario following reductions of SO2 emissions. Water Air Soil Pollut 31(1–2):59–65

    Article  CAS  Google Scholar 

  36. Cain DJ, Luoma SN, Carter JL, Fend SV (1992) Aquatic insect as bioindicators of trace element contamination in cobble-bottom rivers and streams. Can J Fish Aquat Sci 49(10):2141–2154

    Article  CAS  Google Scholar 

  37. Nation JL (2002) Insect physiology and biochemistry. CRC Press, Gainesville, Florida, p 485

    Google Scholar 

  38. Cornelissen JHC, Lang SI, Soudzilovskaia NA, During HJ (2007) Comparative cryptogam ecology: a review of bryophyte and lichen traits that drive biogeochemistry. Ann Bot 99:987–1001

    Article  PubMed  CAS  Google Scholar 

  39. Knorr IB, Naumova EN, Trounova VA, Zolotarev KV (1998) Migration of chemical elements in food chains and ontogeny phases of meadow moth in the remote migration of butterflies. Nucl Instrum Meth A 405:550–552

    Article  CAS  Google Scholar 

  40. Sokolovskaya IP, Trounova VA, Kiprpyanova LM (2000) The investigation of element distributions in some aquatic higher plants and bottom sediments of Novosibirsk reservoir (data by SR-XRF techniques). Nucl Instrum Methods 448:449–452

    Article  CAS  Google Scholar 

  41. NRCC (1988) Biologically available metals in sediments. National Research Council of Canada, Assoc. Committee Sci. Criteria Environ. Quality, NRCC Publ 27694

Download references

Acknowledgments

The author wants to express his sincere thanks to Prof. Dr. Abdulhalik Karabulut, Prof. Dr. Gökhan Budak, Assoc. Prof. Dr. Ali Gürol and all researchers in department of Physics (Erzurum, Turkey) for their help and to Assoc. Prof. Dr. Ö. Cevdet Bilgin (Erzurum, Turkey) for statistical analyses and to Dr. David Bilton (University of Plymouth, UK) for checking the manuscript for use of English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ömer Köksal Erman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erman, Ö.K. Elemental Composition in Two Water Beetles (Dytiscus thianschanicus, Dytiscus persicus) (Dytiscidae: Coleoptera) as Revealed by WDXRF Spectroscopy. Biol Trace Elem Res 143, 1541–1563 (2011). https://doi.org/10.1007/s12011-011-9000-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-011-9000-6

Keywords

Navigation