Skip to main content
Log in

Reversal of Osteoporotic Changes of Mineral Composition in Femurs of Diabetic Rats by Insulin

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Insulin plays an important role in bone prevention of diabetic osteoporosis, but little is known about the relation between the bone mineral density (BMD) increase and the change of mineral element content after treated with insulin. To address this problem, male Wistar rats were randomly divided into three groups: normal group (n = 6), streptozotocin-induced diabetic group (n = 5), and streptozotocin-induced diabetic group with insulin treatment (n = 5). The femoral BMD was measured by dual energy X-ray absorptiometry, and the element content was determined by inductively coupled plasma atomic emission spectrometry (ICP-AES). The results showed that the femoral BMD in diabetic group was significantly lower than that in normal group (P < 0.01) but restored by insulin treatment (P < 0.01 vs diabetic group). ICP-AES analysis revealed that the element content of calcium (Ca), phosphorous (P), magnesium (Mg), strontium (Sr), and potassium (K) in diabetic group were remarkably lower than those in normal group (P < 0.01) but only Ca, P, and Mg content were significantly increased compared with diabetic group (P < 0.05) after insulin treatment. However, no significant differences were observed in element zinc (Zn) content among three groups. Our findings suggested that the loss of Ca, P, Mg, Sr, and K content accounted for the lower BMD in streptozotocin-induced diabetes rats, insulin treatment could restore BMD by increasing the content of Ca, P, and Mg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Seeman E (2003) Invited Review: pathogenesis of osteoporosis. J Appl Physiol 95:2142–2151

    PubMed  Google Scholar 

  2. World Health Organization (2003) World Health Organization Prevention and Management of Osteoporosis, Technical Report Series, No. 921, WHO Marketing and Dissemination, Geneva

  3. Krakauer JC, McKenna MJ, Buderer NF, Rao DS, Whitehouse FW, Parfitt AM (1995) Bone loss and bone turnover in diabetes. Diabetes 44:775–782

    Article  PubMed  CAS  Google Scholar 

  4. Kemink SA, Hermus AR, Swinkels LM, Lutterman JA, Smals AG (2000) Osteopenia in insulin-dependent diabetes mellitus; prevalence and aspects of pathophysiology. J Endocrinol Invest 23:295–303

    PubMed  CAS  Google Scholar 

  5. Dominguez LJ, Muratore M, Quarta E, Zagone G, Barbagallo M (2004) Osteoporosis and diabetes. Reumatismo 56(4):235–241

    PubMed  CAS  Google Scholar 

  6. Schwartz AV (2003) Diabetes Mellitus: does it Affect Bone? Calcif Tissue Int 73(6):515–519

    Article  PubMed  CAS  Google Scholar 

  7. Duarte VM, Ramos AM, Rezende LA, Macedo UB, Brandao-Neto J, Almeida MG, Rezende AA (2005) Osteopenia: a bone disorder associated with diabetes mellitus. J Bone Miner Metab 23(1):58–68

    Article  PubMed  Google Scholar 

  8. Herrero S, Calvo OM, Garcia-Moreno C, Martin E, San Roman JI, Martin M, Garcia-Talavera JR, Calvo JJ, Pino-Montes J (1998) Low bone density with normal bone turnover in ovariectomized and streptozotocin-induced diabetic rats. Calcif Tissue Int 62:260–265

    Article  PubMed  CAS  Google Scholar 

  9. Schwartz AV, Sellmeyer DE, Ensrud KE, Cauley JA, Tabor HK, Schreiner PJ, Jamal SA, Black DM, Cummings SR (2001) Older women with diabetes have an increased risk of fracture: a prospective study. J Clin Endocrinol Metab 86:32–38

    Article  PubMed  CAS  Google Scholar 

  10. Forsen L, Meyer HE, Midthjell K, Edna TH (1999) Diabetes mellitus and the incidence of hip fracture: results from the Nord-Trondelag Health Survey. Diabetologia 42:920–925

    Article  PubMed  CAS  Google Scholar 

  11. White CB, Turner NS, Lee GC, Haidukewych GJ (2003) Open ankle fractures in patients with diabetes mellitus. Clin Orthop 414:37–44

    Article  PubMed  Google Scholar 

  12. Folk JW, Starr AJ, Early JS (1999) Early wound complications of operative treatment of calcaneus fractures: analysis of 190 fractures. J Orthop Trauma 13:369–372

    Article  PubMed  CAS  Google Scholar 

  13. Thrailkill KM, Lumpkin CK Jr., Bunn RC, Kemp SF, Fowlkes JL (2005) Is insulin an anabolic agent in bone? Dissecting the diabetic bone for clues. Am J Physiol Endocrinol Metab 289:735–745

    Article  CAS  Google Scholar 

  14. Bouillon R (1991) Diabetic bone disease [editorial]. Calcif Tissue Int 49:155–160

    Article  PubMed  CAS  Google Scholar 

  15. Hashizume M, Yamaguchi M (1993) Stimulatory effect of beta-alanyl-Lhistidinato zinc on cell proliferation is dependent on protein synthesis in osteoblastic MC3T3-E1 cells. Mol Cell Biochem 122:59–64

    Article  PubMed  CAS  Google Scholar 

  16. Pun KK, Lau P, Ho PW (1989) The characterization, regulation, and function of insulin receptors on osteoblast-like clonal osteosarcoma cell line. J Bone Miner Res 4:853–862

    Article  PubMed  CAS  Google Scholar 

  17. Mishima N, Sahara N, Shirakawa M, Ozawa H (2002) Effect of streptozotocin-induced diabetes mellitus on alveolar bone deposition in the rat. Arch Oral Biol 47:843–849

    Article  PubMed  CAS  Google Scholar 

  18. Glajchen N, Epstein S, Ismail F, Thomas S, Fallon M, Chakrabarti, S (1988) Bone mineral metabolism in experimental diabetes mellitus: Osteocalcin as a measure of bone remodeling. Endocrinology 123:290–295

    Article  PubMed  CAS  Google Scholar 

  19. Follak N, Kloting L, Wolf E, Merk H (2004) Delayed remodeling in the early period of fracture healing in spontaneously diabetic BB/OK rats depending on the diabetic metabolic state. Histol Histopathol 19:473–486

    PubMed  CAS  Google Scholar 

  20. Follak N, Kloting I, Merk H (2005) Influence of diabetic metabolic state on fracture healing in spontaneously diabetic rats. Diabetes Metab Res Rev 21:288–296

    Article  PubMed  Google Scholar 

  21. Tein MS, Breen SA, Loveday BE, Devlin H, Balment RJ, Boyd RD, Sibley CP, Garland HO (1998) Bone mineral density and composition in rat pregnancy: effects of streptozotocin-induced diabetes mellitus and insulin replacement. Exp Physiol 83(2):165–174

    PubMed  CAS  Google Scholar 

  22. Simeckova A et al (1990) The effect of streptozotocin-induced diabetes treated with insulin on the metabolism of calcium, magnesium and phosphorus. Vnitr Lek 36(6):526–530

    PubMed  CAS  Google Scholar 

  23. Hasegawa T, et al (2003) Major-to-ultratrace element in bone-marrow fluid as determined by ICP-AES and ICP-MS. Analytical sciences vol. 19

  24. Matsuura H et al (2001) Element in black tea leaves by ICP-AES and ICP-MS with the acid of size exclusion chromatography. Anal Sci 17:391

    Article  PubMed  CAS  Google Scholar 

  25. Jasminka Z, Ilich JZ, Kerstetter JE (2000) Nutrition in bone health revisited: a story beyond calcium. J Am Coll Nutr 19:715–737

    Google Scholar 

  26. Basabe Tuero B et al (2004) The influence of calcium and phosphorus intake on bone mineral density in young women. ArchLatinoam Nutr 54(2):203–208

    Google Scholar 

  27. Zeni S, Weisstaub A (2003) Bone mass changes in vivo during the entire reproductive cycle in rats feeding different dietary calcium and calcium/phosphorus ratio content. Calcif Tissue Int 73(6):594–600

    Article  PubMed  CAS  Google Scholar 

  28. Flynn A (2003) The role of dietary calcium in bone health. Proc Nutr Soc 62(4):851–858

    Article  PubMed  CAS  Google Scholar 

  29. Purroy J, Spurr NK (2002) Molecular genetics of calcium sensing in bone cells. Hum Mol Genet 11:2377–2384

    Article  PubMed  CAS  Google Scholar 

  30. Basabe Tuero B, Mena Valverde MC, Faci Vega M, Aparicio Vizuete A, Lopez Sobaler AM, Ortega Anta RM (2004) The influence of calcium and phosphorus intake on bone mineral density in young women. Arch Latinoam Nutr 54(2):203–208

    PubMed  Google Scholar 

  31. Sasaki S (2006) Calcium, magnesium, and potassium as dietary nutrients. Clin Calcium 16(1):110–115

    PubMed  CAS  Google Scholar 

  32. Pointillart A, Gueguen L (1993) Meal-feeding and phosphorus ingestion influence calcium bioavailability evaluated by calcium balance and bone breaking strength in pigs. Bone Miner 21(1):75–81

    Article  PubMed  CAS  Google Scholar 

  33. Carpenter TO, Barton CN, Park YK (2000) Usual dietary magnesium intake in NHANES III is associated with femoral bone mass. J Bone Min Res 15(1):S292

    Google Scholar 

  34. Kawaura A, Nishida Y, Takeda E (2005) Phosphorus intake and bone mineral density (BMD). Clin Calcium 15(9):1501–1506

    PubMed  CAS  Google Scholar 

  35. Koshihara M, Katsumata S, Uehara M, Suzuki K (2005) Effects of dietary phosphorus intake on bone mineralization and calcium absorption in adult female rats. Biosci Biotechnol Biochem 69(5):1025–1028

    Article  PubMed  CAS  Google Scholar 

  36. Heaney RP (2004) Phosphorus nutrition and the treatment of osteoporosis. Mayo Clin Proc 79(1):91–97

    Article  PubMed  CAS  Google Scholar 

  37. Fawcett WJ, Haxby EJ (1999) Male DA Magnesium: physiology and pharmacology. BJA 83:302–320

    PubMed  CAS  Google Scholar 

  38. Hartwig A (2001) Role of magnesium in genomic stability. Mut Res 475:113–121

    CAS  Google Scholar 

  39. Rude RK, Gruber HE, Norton HJ, Wei LY, Frausto A, Kilburn J (2006) Reduction of dietary magnesium by only 50% in the rat disrupts bone and mineral metabolism. Osteoporos Int 17(7):1022–1032

    Article  PubMed  CAS  Google Scholar 

  40. Matsuzaki H, Uehara M, Suzuki K (2005) Effect of dietary magnesium supplementation on bone loss in rats fed a high phosphorus diet. Magnes Res 18(2):91–96

    PubMed  Google Scholar 

  41. Nishimuta M, Kodama N, Morikuni E, Yoshioka YH, Yamada H, Kitajima H, Takeyama H, Suzuki K (2004) Balance of magnesium positively correlates with that of calcium. J Am Coll Nutr 23(6):768S–770S

    PubMed  CAS  Google Scholar 

  42. Lemann J, Pleuss JA, Gray RW (1993) Potassium causes calcium retention in healthy adults. J Nutr 123:1623–1626

    PubMed  CAS  Google Scholar 

  43. Sebastian A, Harris ST, Ottaway JH, Todd KM, Morris RC Jr. (1994) Improved mineral balance and skeletal metabolism in postmenopausal women treated with potassium bicarbonate. N Engl J Med 330:1776–1781

    Article  PubMed  CAS  Google Scholar 

  44. Granda TG, Velasco A (2002) Sodium and potassium clearance rhythmicity in diabetic rats with insulin treatment. Life Sciences 71:2475–2487

    Article  PubMed  CAS  Google Scholar 

  45. Macdonald HM, New SA, Fraser WD, Campbell MK, Reid DM (2005) Low dietary potassium intakes and high dietary estimates of net endogenous acid production are associated with low bone mineral density in premenopausal women and increased markers of bone resorption in postmenopausal women. Am J Clin Nutr 81:923–933

    PubMed  CAS  Google Scholar 

  46. New SA, Robins SP, Campbell MK, Martin JC, Garton MJ, Bolton-Smith C, Grubb DA, Lee SJ, Reid DM (2000) Dietary influences on bone mass and bone metabolism further evidence of a positive link between fruit and vegetable consumption and bone health? Am J Clin Nutr 71:142–151

    PubMed  CAS  Google Scholar 

  47. Zhang Y, Cheng F, Li D, Wang Y, Zhang G, Liao W, Tang T, Huang Y, He W (2005) Investigation of elemental content distribution in femoral head slice with osteoporosis by SRXRF microprobe. Biol Trace Elem Res 103:177–185

    Article  PubMed  CAS  Google Scholar 

  48. Marie PJ (2005) Strontium as therapy for osteoporosis. Curr Opin Pharmacol 5:633–636

    Article  PubMed  CAS  Google Scholar 

  49. Marie PJ, Ammann P, Boivin G, Rey C (2001) Mechanisms of action and therapeutic potential of strontium in bone. Calcif Tissue Int 69(3):121–129

    Article  PubMed  CAS  Google Scholar 

  50. Coulombe J, Faure H, Robin B (2004) In vitro effects of strontium ranelate on the extracellular calcium-sensing receptor. Biochem Biophys Res 323(4):1184–1190

    Article  CAS  Google Scholar 

  51. Reginster JY, Seeman E, De Vernejoul MC, Adami S, Compston J, Phenekos C (2005) Strontium ranelate reduces the risk of nonvertebral fractures in postmenopausal women with osteoporosis: Treatment of Peripheral Osteoporosis (TROPOS) study. J Clin Endocrinol Metab 90(5):2816–2822

    Article  PubMed  CAS  Google Scholar 

  52. Fei Y, Zhang M, Li M, Huang Y, He W, Ding W, Yang J (2007) Element analysis in femur of diabetic osteoporosis model by SRXRF microprobe. Micron 38(6):637–642

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work is supported by the Scientific Research Foundation of Graduate University of Chinese Academy of Sciences (No. 055101FM03) and China National Natural Sciences Foundation (No. 20571084).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhong Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Fei, Y., Zhang, M. et al. Reversal of Osteoporotic Changes of Mineral Composition in Femurs of Diabetic Rats by Insulin. Biol Trace Elem Res 121, 233–242 (2008). https://doi.org/10.1007/s12011-007-8043-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-007-8043-1

Keywords

Navigation