Skip to main content
Log in

Burn Wound Healing Abilities of a Uronic Acid Containing Exopolysaccharide Produced by the Marine Bacterium Halomonas malpeensis YU-PRIM-29 T

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Bacterial exopolysaccharides (EPS) are an emerging class of biopolymers with extensive applications in different fields due to their versatile physico-chemical and biological properties. The role of EPS in healing of different wound types is gaining interest in the tissue engineering sector. Burn is one of the devitalizing injuries that causes greater physical harm and can be fatal. Appropriate treatment modalities have to be followed for faster healing outcomes and to minimize the risk. In this study, a bacterial EPS (EPS-H29) from the marine bacterium Halomonas malpeensis YU-PRIM-29 T was used to treat the burn wound in vivo. The biochemical and structural characterizations of EPS-H29 were carried out using standard methods. In addition, FE-SEM, conformational, rheological, and HP-GPC analyses were carried out. In vitro biocompatibility of EPS-H29 was studied in human dermal fibroblasts (HDFs) and keratinocytes (HaCaT). Scratch assay was used to study the wound healing in vitro. For in vivo evaluation, burn wound (second-degree) was created on Wistar albino rats and treated with EPS-H29 along with appropriate control groups. The total sugar and protein contents of EPS-H29 were 72.0 ± 1.4% and 4.0 ± 0.5%, respectively, with a molecular weight of 5.2 × 105 Da. The lyophilized samples exhibited porous surface features, and in solution, it showed triple helical conformation and shear thickening behavior. In vitro cell-based assays showed biocompatibility of EPS-H29 up to 200 μg/mL concentration. At a concentration up to 50 μg/mL, EPS-H29 promoted cell proliferation. Significant increase in the HDF cell migration was evident with EPS-H29 (15 μg/mL) treatment in vitro and induced significantly higher (p ≤ 0.0001) closure of the scratch area (90.3 ± 1.1%), compared to the control (84.3 ± 1.3%) at 24 h. Enhanced expression of Ki-67 was associated with the cell proliferative activities of EPS-H29. The animals treated with EPS-H29 showed improved healing of burn wounds with significantly higher wound contraction rate (80.6 ± 9.4%) compared to the positive control (54.6 ± 8.0%) and untreated group (49.2 ± 3.7%) with histopathological evidence of epidermal tissue formation at 15 days of treatment. These results demonstrate the biocompatibility and burn wound healing capability of EPS-H29 and its potential as an effective topical agent for the burn wound care.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The data pertaining to the manuscript shall be shared upon requesting the corresponding author.

References

  1. Sran, K. S., Bisht, B., Mayilraj, S., & Roy Choudhury, A. (2019). Structural characterization and antioxidant potential of a novel anionic exopolysaccharide produced by marine Microbacterium aurantiacum FSW-25. International Journal of Biological Macromolecules, 131, 343–352. https://doi.org/10.1016/j.ijbiomac.2019.03.016

    Article  CAS  PubMed  Google Scholar 

  2. Dhanya, B. E., Prabhu, A., & Rekha, P. D. (2022). Extraction and characterization of an exopolysaccharide from a marine bacterium. International microbiology : The Official Journal of the Spanish Society for Microbiology, 25(2), 285–295. https://doi.org/10.1007/s10123-021-00216-7

    Article  CAS  PubMed  Google Scholar 

  3. Jiang, P., Li, J., Han, F., Duan, G., Lu, X., Gu, Y., & Yu, W. (2011). Antibiofilm activity of an exopolysaccharide from marine bacterium Vibrio sp. QY101. PloS One, 6(4), e18514. https://doi.org/10.1371/journal.pone.0018514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sathishkumar, R., Kannan, R., Jinendiran, S., Sivakumar, N., Selvakumar, G., & Shyamkumar, R. (2021). Production and characterization of exopolysaccharide from the sponge-associated Bacillus subtilis MKU SERB2 and its in-vitro biological properties. International Journal of Biological Macromolecules, 166, 1471–1479. https://doi.org/10.1016/j.ijbiomac.2020.11.026

    Article  CAS  PubMed  Google Scholar 

  5. Ayyash, M., Abu-Jdayil, B., Olaimat, A., Esposito, G., Itsaranuwat, P., Osaili, T., … Liu, S.-Q. (2020). Physicochemical, bioactive and rheological properties of an exopolysaccharide produced by a probiotic Pediococcus pentosaceus M41. Carbohydrate Polymers, 229, 115462. https://doi.org/10.1016/j.carbpol.2019.115462

  6. Selim, S., Almuhayawi, M. S., Alharbi, M. T., Nagshabandi, M. K., Alanazi, A., Warrad, M., … Ali, A. S. (2022). In vitro assessment of antistaphylococci, antitumor, immunological and structural characterization of acidic bioactive exopolysaccharides from marine Bacillus cereus isolated from Saudi Arabia. Metabolites, 12(2), 132. https://doi.org/10.3390/metabo12020132

  7. Wei, M., Geng, L., Wang, Q., Yue, Y., Wang, J., Wu, N., … Zhang, Q. (2021). Purification, characterization and immunostimulatory activity of a novel exopolysaccharide from Bacillus sp. H5. International Journal of Biological Macromolecules, 189, 649–656. https://doi.org/10.1016/j.ijbiomac.2021.08.159

  8. Carrión, O., Delgado, L., & Mercade, E. (2015). New emulsifying and cryoprotective exopolysaccharide from Antarctic Pseudomonas sp. ID1. Carbohydrate Polymers, 117, 1028–1034. https://doi.org/10.1016/j.carbpol.2014.08.060

    Article  CAS  PubMed  Google Scholar 

  9. Ali, P., Shah, A. A., Hasan, F., Hertkorn, N., Gonsior, M., Sajjad, W., & Chen, F. (2019). A glacier bacterium produces high yield of cryoprotective exopolysaccharide. Frontiers in Microbiology, 10, 3096. https://doi.org/10.3389/fmicb.2019.03096

    Article  PubMed  Google Scholar 

  10. Sahana, T. G., & Rekha, P. D. (2020). A novel exopolysaccharide from marine bacterium Pantoea sp. YU16-S3 accelerates cutaneous wound healing through Wnt/β-catenin pathway. Carbohydrate Polymers, 238, 116191. https://doi.org/10.1016/j.carbpol.2020.116191

    Article  CAS  PubMed  Google Scholar 

  11. Qi, M., Zheng, C., Wu, W., Yu, G., & Wang, P. (2022). Exopolysaccharides from marine microbes: Source, structure and application. Marine Drugs, 20(8), 512. https://doi.org/10.3390/md20080512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen, B., You, W., Huang, J., Yu, Y., & Chen, W. (2010). Isolation and antioxidant property of the extracellular polysaccharide from Rhodella reticulata. World Journal of Microbiology and Biotechnology, 26(5), 833–840. https://doi.org/10.1007/s11274-009-0240-y

    Article  CAS  Google Scholar 

  13. Liu, S. B., Chen, X. L., He, H. L., Zhang, X. Y., Xie, B. Bin, Yu, Y., … Zhang, Y. Z. (2013). Structure and ecological roles of a novel exopolysaccharide from the Arctic sea ice bacterium Pseudoalteromonas sp. strain SM20310. Applied and Environmental Microbiology, 79(1), 224–230. https://doi.org/10.1128/AEM.01801-12

  14. Sahana, T. G., & Rekha, P. D. (2019). A bioactive exopolysaccharide from marine bacteria Alteromonas sp. PRIM-28 and its role in cell proliferation and wound healing in vitro. International Journal of Biological Macromolecules, 131, 10–18. https://doi.org/10.1016/j.ijbiomac.2019.03.048

    Article  CAS  PubMed  Google Scholar 

  15. Elmansy, E. A., Elkady, E. M., Asker, M. S., Abdou, A. M., Abdallah, N. A., & Amer, S. K. (2022). Exopolysaccharide produced by Lactiplantibacillus plantarum RO30 isolated from Romi cheese: Characterization, antioxidant and burn healing activity. World Journal of Microbiology and Biotechnology, 38(12), 245. https://doi.org/10.1007/s11274-022-03439-6

    Article  CAS  PubMed  Google Scholar 

  16. Warby, R., & Maani, C. V. (2022). Burn Classification. Genesys RMC, Grand Blanc: StatPearls Publishing, Treasure Island (FL). Retrieved from https://europepmc.org/abstract/MED/30969595. Accessed 26 Sept 2023.

  17. Markiewicz-Gospodarek, A., Kozioł, M., Tobiasz, M., Baj, J., Radzikowska-Büchner, E., & Przekora, A. (2022). Burn wound healing: Clinical complications, medical care, treatment, and dressing types: The current state of knowledge for clinical practice. International Journal of Environmental Research and Public Health, 19(3), 1338. https://doi.org/10.3390/ijerph19031338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nielson, C. B., Duethman, N. C., Howard, J. M., Moncure, M., & Wood, J. G. (2017). Burns: Pathophysiology of systemic complications and current management. Journal of Burn Care & Research: Official Publication of the American Burn Association, 38(1), e469–e481. https://doi.org/10.1097/BCR.0000000000000355

    Article  Google Scholar 

  19. Loo, Y., Wong, Y.-C., Cai, E. Z., Ang, C.-H., Raju, A., Lakshmanan, A., … Hauser, C. A. E. (2014). Ultrashort peptide nanofibrous hydrogels for the acceleration of healing of burn wounds. Biomaterials, 35(17), 4805–4814. https://doi.org/10.1016/j.biomaterials.2014.02.047

  20. Rowan, M. P., Cancio, L. C., Elster, E. A., Burmeister, D. M., Rose, L. F., Natesan, S., … Chung, K. K. (2015). Burn wound healing and treatment: Review and advancements. Critical Care, 19(1), 243. https://doi.org/10.1186/s13054-015-0961-2

  21. Oryan, A., Alemzadeh, E., & Moshiri, A. (2017). Burn wound healing: present concepts, treatment strategies and future directions. Journal of Wound Care, 26(1), 5–19. https://doi.org/10.12968/jowc.2017.26.1.5

    Article  CAS  PubMed  Google Scholar 

  22. Sanchez, M. F., Breda, S. A., Soria, E. A., Tártara, L. I., Manzo, R. H., & Olivera, M. E. (2018). Ciprofloxacin-lidocaine-based hydrogel: Development, characterization, and in vivo evaluation in a second-degree burn model. Drug Delivery and Translational Research, 8(5), 1000–1013. https://doi.org/10.1007/s13346-018-0523-7

    Article  CAS  PubMed  Google Scholar 

  23. Ghica, M. V., Albu Kaya, M. G., Dinu-Pîrvu, C.-E., Lupuleasa, D., & Udeanu, D. I. (2017). Development, optimization and in vitro/ in vivo characterization of collagen-dextran spongious wound dressings loaded with flufenamic acid. Molecules, 22(9), 1552. https://doi.org/10.3390/molecules22091552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Alemdaroğlu, C., Değim, Z., Çelebi, N., Zor, F., Öztürk, S., & Erdoğan, D. (2006). An investigation on burn wound healing in rats with chitosan gel formulation containing epidermal growth factor. Burns, 32(3), 319–327. https://doi.org/10.1016/j.burns.2005.10.015

    Article  PubMed  Google Scholar 

  25. Ribeiro, M. P., Espiga, A., Silva, D., Baptista, P., Henriques, J., Ferreira, C., … Correia, I. J. (2009). Development of a new chitosan hydrogel for wound dressing. Wound Repair and Regeneration, 17(6), 817–824. https://doi.org/10.1111/j.1524-475X.2009.00538.x

  26. Bhowmick, S., Thanusha, A. V., Kumar, A., Scharnweber, D., Rother, S., & Koul, V. (2018). Nanofibrous artificial skin substitute composed of mPEG–PCL grafted gelatin/hyaluronan/chondroitin sulfate/sericin for 2nd degree burn care: In vitro and in vivo study. RSC Advances, 8(30), 16420–16432. https://doi.org/10.1039/C8RA01489B

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ghadimi, T., Naderi Gharahgheshlagh, S., Latifi, N., Hivechi, A., Hosseinpour Sarmadi, V., Farokh Forghani, S., … Nezari, S. (2023). The effect of rainbow trout (Oncorhynchus mykiss) collagen incorporated with exo-polysaccharides derived from Rhodotorula mucilaginosa sp. on burn healing. Macromolecular Bioscience, 23(9), e2300033. https://doi.org/10.1002/mabi.202300033

  28. Navarro-Torre, S., Carro, L., Rodríguez-Llorente, I. D., Pajuelo, E., Caviedes, M. Á., Igual, J. M., … Montero-Calasanz, M. del C. (2020). Halomonas radicis sp. nov., isolated from Arthrocnemum macrostachyum growing in the Odiel marshes (Spain) and emended descriptions of Halomonas xinjiangensis and Halomonas zincidurans. International Journal of Systematic and Evolutionary Microbiology, 70(1), 220–227. https://doi.org/10.1099/ijsem.0.003742

  29. Gan, L., Long, X., Zhang, H., Hou, Y., Tian, J., Zhang, Y., & Tian, Y. (2018). Halomonas saliphila sp. nov., a moderately halophilic bacterium isolated from a saline soil. International Journal of Systematic and Evolutionary Microbiology, 68(4), 1153–1159. https://doi.org/10.1099/ijsem.0.002644

    Article  CAS  PubMed  Google Scholar 

  30. Kampfer, P., Rekha, P. D., Busse, H.-J., Arun, A. B., Priyanka, P., & Glaeser, S. P. (2018). Halomonas malpeensis sp. nov., isolated from rhizosphere sand of a coastal sand dune plant. International Journal of Systematic and Evolutionary Microbiology, 68(4), 1037–1046. https://doi.org/10.1099/ijsem.0.002616

    Article  CAS  PubMed  Google Scholar 

  31. Arias, S., del Moral, A., Ferrer, M. R., Tallon, R., Quesada, E., & Béjar, V. (2003). Mauran, an exopolysaccharide produced by the halophilic bacterium Halomonas maura, with a novel composition and interesting properties for biotechnology. Extremophiles, 7(4), 319–326. https://doi.org/10.1007/s00792-003-0325-8

    Article  CAS  PubMed  Google Scholar 

  32. Poli, A., Moriello, V. S., Esposito, E., Lama, L., Gambacorta, A., & Nicolaus, B. (2004). Exopolysaccharide production by a new Halomonas strain CRSS isolated from saline lake Cape Russell in Antarctica growing on complex and defined media. Biotechnology Letters, 26(21), 1635–1638. https://doi.org/10.1007/s10529-004-3187-y

    Article  CAS  PubMed  Google Scholar 

  33. Llamas, I., Amjres, H., Mata, J. A., Quesada, E., & Béjar, V. (2012). The potential biotechnological applications of the exopolysaccharide produced by the halophilic bacterium Halomonas almeriensis. Molecules, 17(6), 7103–7120. https://doi.org/10.3390/molecules17067103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. AthmikaGhate, S. D., Arun, A. B., Rao, S. S., Kumar, S. T. A., Kandiyil, M. K., & Rekha, P. D. (2021). Genome analysis of a halophilic bacterium Halomonas malpeensis YU-PRIM-29T reveals its exopolysaccharide and pigment producing capabilities. Scientific Reports, 11(1), 1749. https://doi.org/10.1038/s41598-021-81395-1

    Article  CAS  Google Scholar 

  35. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350–356. https://doi.org/10.1021/ac60111a017

    Article  CAS  Google Scholar 

  36. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254. https://doi.org/10.1006/abio.1976.9999

    Article  CAS  PubMed  Google Scholar 

  37. Vasconcelos, A. F. D., Monteiro, N. K., Dekker, R. F. H., Barbosa, A. M., Carbonero, E. R., Silveira, J. L. M., … de Lourdes Corradi da Silva, M. (2008). Three exopolysaccharides of the beta-(1-->6)-D-glucan type and a beta-(1-->3;1-->6)-D-glucan produced by strains of Botryosphaeria rhodina isolated from rotting tropical fruit. Carbohydrate Research, 343(14), 2481–2485. https://doi.org/10.1016/j.carres.2008.06.013

  38. Kim, M., Lee, H. J., Randy, A., Yun, J. H., Oh, S.-R., & Nho, C. W. (2017). Stellera chamaejasme and its constituents induce cutaneous wound healing and anti-inflammatory activities. Scientific Reports, 7(1), 42490. https://doi.org/10.1038/srep42490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kasibhatla, S., Amarante-Mendes, G. P., Finucane, D., Brunner, T., Bossy-Wetzel, E., & Green, D. R. (2006). Acridine orange/Ethidium bromide (AO/EB) staining to detect apoptosis. CSH Protocols, 2006(3). https://doi.org/10.1101/pdb.prot4493

  40. Gabbiani, G., Gabbiani, F., Heimark, R. L., & Schwartz, S. M. (1984). Organization of actin cytoskeleton during early endothelial regeneration in vitro. Journal of Cell Science, 66, 39–50. https://doi.org/10.1242/jcs.66.1.39

    Article  CAS  PubMed  Google Scholar 

  41. Liang, C. C., Park, A. Y., & Guan, J. L. (2007). In vitro scratch assay: A convenient and inexpensive method for analysis of cell migration in vitro. Nature Protocols, 2(2), 329–333. https://doi.org/10.1038/nprot.2007.30

    Article  CAS  PubMed  Google Scholar 

  42. Cai, E. Z., Ang, C. H., Raju, A., Tan, K. B., Hing, E. C. H., Loo, Y., & Lim, T. C. (2014). Creation of consistent burn wounds: A rat model. Archives of Plastic Surgery, 41(4), 317–324. https://doi.org/10.5999/aps.2014.41.4.317

    Article  PubMed  PubMed Central  Google Scholar 

  43. Patel, G. K., Wilson, C. H., Harding, K. G., Finlay, A. Y., & Bowden, P. E. (2006). Numerous keratinocyte subtypes involved in wound re-epithelialization. Journal of Investigative Dermatology, 126(2), 497–502. https://doi.org/10.1038/sj.jid.5700101

    Article  CAS  PubMed  Google Scholar 

  44. Joulak, I., Finore, I., Poli, A., Abid, Y., Bkhairia, I., Nicolaus, B., & Azabou, S. (2020). Hetero-exopolysaccharide from the extremely halophilic Halomonas smyrnensis K2: production, characterization and functional properties in vitro. 3 Biotech, 10(9), 395. https://doi.org/10.1007/s13205-020-02356-5

    Article  PubMed  PubMed Central  Google Scholar 

  45. Chouchane, H., Boutiti, S., Ouertani, A., Hassen, W., Guesmi, S., Neifar, M., … Cherif, A. (2021). Effect of gamma irradiation on enhanced biological activities of exopolysaccharide from Halomonas desertis G11: Biochemical and genomic insights. Polymers, 13(21), 3798. https://doi.org/10.3390/polym13213798

  46. Tabernero, A., & Cardea, S. (2020). Microbial exopolysaccharides as drug carriers. Polymers, 12(9), 2142. https://doi.org/10.3390/polym12092142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Meng, Y., Lyu, F., Xu, X., & Zhang, L. (2020). Recent advances in chain conformation and bioactivities of triple-helix polysaccharides. Biomacromolecules, 21(5), 1653–1677. https://doi.org/10.1021/acs.biomac.9b01644

    Article  CAS  PubMed  Google Scholar 

  48. Wee, M. S. M., Matia-Merino, L., Carnachan, S. M., Sims, I. M., & Goh, K. K. T. (2014). Structure of a shear-thickening polysaccharide extracted from the New Zealand black tree fern, Cyathea medullaris. InternationalJournal of Biological Macromolecules, 70, 86–91. https://doi.org/10.1016/j.ijbiomac.2014.06.032

    Article  CAS  Google Scholar 

  49. Chikkanna, A., Ghosh, D., & Kishore, A. (2018). Expression and characterization of a potential exopolysaccharide from a newly isolated halophilic thermotolerant bacteria Halomonas nitroreducens strain WB1. PeerJ, 2018(4), 1–18. https://doi.org/10.7717/peerj.4684

    Article  CAS  Google Scholar 

  50. Antonio, J., Béjar, V., Llamas, I., & Arias, S. (2006). Exopolysaccharides produced by the recently described halophilic bacteria Halomonas ventosae and Halomonas anticariensis. Research in Microbiology, 157, 827–835. https://doi.org/10.1016/j.resmic.2006.06.004

    Article  CAS  Google Scholar 

  51. Joulak, I., Azabou, S., Finore, I., Poli, A., Nicolaus, B., Donato, P. D. I., … Attia, H. (2020). Structural characterization and functional properties of novel exopolysaccharide from the extremely halotolerant Halomonas elongata S6. International Journal of Biological Macromolecules, 164, 95–104. https://doi.org/10.1016/j.ijbiomac.2020.07.088

  52. Mata, J. A., Bejar, V., Llamas, I., Arias, S., Bressollier, P., Tallon, R., … Quesada, E. (2006). Exopolysaccharides produced by the recently described halophilic bacteria Halomonas ventosae and Halomonas anticariensis. Research in Microbiology, 157(9), 827–835. https://doi.org/10.1016/j.resmic.2006.06.004

  53. Govarthanan, M., Shim, J., Praburaman, L., Kim, S. A., & Oh, B. T. (2016). Isolation of an exopolysaccharide-producing heavy metal-resistant Halomonas sp. MG. Archives of Microbiology, 198(2), 205–209. https://doi.org/10.1007/s00203-015-1173-5

    Article  CAS  PubMed  Google Scholar 

  54. Mukherjee, P., Mitra, A., & Roy, M. (2019). Halomonas rhizobacteria of Avicennia marina of Indian Sundarbans promote rice growth under saline and heavy metal stresses through exopolysaccharide production. Frontiers in Microbiology, 10, 1207. https://doi.org/10.3389/fmicb.2019.01207

    Article  PubMed  PubMed Central  Google Scholar 

  55. Raveendran, S., Palaninathan, V., Chauhan, N., Sakamoto, Y., Yoshida, Y., Maekawa, T., … Kumar, D. S. (2013). In vitro evaluation of antioxidant defense mechanism and hemocompatibility of mauran. Carbohydrate Polymers, 98(1), 108–115. https://doi.org/10.1016/j.carbpol.2013.04.050

  56. Pérez-Fernández, M. E., Quesada, E., Gálvez, J., & Ruiz, C. (2000). Effect of exopolysaccharide V2–7, isolated from Halomonas eurihalina, on the proliferation in vitro of human peripheral blood lymphocytes. Immunopharmacology and Immunotoxicology, 22(1), 131–141. https://doi.org/10.3109/08923970009016411

    Article  PubMed  Google Scholar 

  57. López-Ortega, M. A., Chavarría-Hernández, N., del López-Cuellar, M., & R., & Rodríguez-Hernández, A. I. (2021). A review of extracellular polysaccharides from extreme niches: An emerging natural source for the biotechnology. From the adverse to diverse! International Journal of Biological Macromolecules, 177, 559–577. https://doi.org/10.1016/j.ijbiomac.2021.02.101

    Article  CAS  PubMed  Google Scholar 

  58. Di Donato, P., Poli, A., Tommonaro, G., Abbamondi, G. R., & Nicolaus, B. (2018). Exopolysaccharide productions from extremophiles: The chemical structures and their bioactivities. In R. K. Sani & N. Krishnaraj Rathinam (Eds.), Extremophilic microbial processing of lignocellulosic feedstocks to biofuels, value-added products, and usable power (pp. 189–205). Springer International Publishing. https://doi.org/10.1007/978-3-319-74459-9_10

  59. Raveendran, S., Dhandayuthapani, B., Nagaoka, Y., Yoshida, Y., Maekawa, T., & Sakthi Kumar, D. (2013). Biocompatible nanofibers based on extremophilic bacterial polysaccharide Mauran from Halomonas maura. Carbohydrate Polymers, 92(2), 1225–1233. https://doi.org/10.1016/j.carbpol.2012.10.033

    Article  CAS  PubMed  Google Scholar 

  60. Zhang, A., Wang, X., Fan, C., & Mao, X. (2021). The role of Ki67 in evaluating neoadjuvant endocrine therapy of hormone receptor-positive breast cancer. Frontiers in Endocrinology, 12, 687244. https://doi.org/10.3389/fendo.2021.687244

    Article  PubMed  PubMed Central  Google Scholar 

  61. Prabhu, V., Rao, B. S. S., Rao, A. C. K., Prasad, K., & Mahato, K. K. (2022). Photobiomodulation invigorating collagen deposition, proliferating cell nuclear antigen and Ki67 expression during dermal wound repair in mice. Lasers in Medical Science, 37(1), 171–180. https://doi.org/10.1007/s10103-020-03202-z

    Article  PubMed  Google Scholar 

  62. Priyanka, P., Arun, A. B., Ashwini, P., & Rekha, P. D. (2016). Functional and cell proliferative properties of an exopolysaccharide produced by Nitratireductor sp. PRIM-31. International Journal of Biological Macromolecules, 85, 400–404. https://doi.org/10.1016/j.ijbiomac.2015.12.091

    Article  CAS  PubMed  Google Scholar 

  63. Sun, M.-L., Zhao, F., Chen, X.-L., Zhang, X.-Y., Zhang, Y.-Z., Song, X.-Y., & Yang, J. (2020). Promotion of wound healing and prevention of frostbite injury in rat skin by exopolysaccharide from the Arctic marine bacterium Polaribacter sp. SM1127. Marine Drugs, 18(1), 48. https://doi.org/10.3390/md18010048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Senni, K., Pereira, J., Gueniche, F., & Delbarre-ladrat, C. (2011). Marine Polysaccharides : A source of bioactive molecules for cell therapy and tissue engineering. Marine Drugs, 9(9), 1664–1681. https://doi.org/10.3390/md9091664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Frenkel, J. S. (2014). The role of hyaluronan in wound healing. International Wound Journal, 11(2), 159–163. https://doi.org/10.1111/j.1742-481X.2012.01057.x

    Article  PubMed  Google Scholar 

  66. Hollmig, S. T., Ariizumi, K., & Cruz, P. D. J. (2009). Recognition of non-self-polysaccharides by C-type lectin receptors dectin-1 and dectin-2. Glycobiology, 19(6), 568–575. https://doi.org/10.1093/glycob/cwp032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chen, R., Xu, J., Wu, W., Wen, Y., Lu, S., El-Seedi, H. R., & Zhao, C. (2022). Structure-immunomodulatory activity relationships of dietary polysaccharides. Current Research in Food Science, 5, 1330–1341. https://doi.org/10.1016/j.crfs.2022.08.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ahuja, V., Bhatt, A. K., Banu, J. R., Kumar, V., Kumar, G., Yang, Y.-H., & Bhatia, S. K. (2023). Microbial exopolysaccharide composites in biomedicine and healthcare: Trends and advances. Polymers, 15(7), 1801. https://doi.org/10.3390/polym15071801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wang, Y., Liu, G., Liu, R., Wei, M., Zhang, J., & Sun, C. (2021). EPS364, a novel deep-sea bacterial exopolysaccharide, inhibits liver cancer cell growth and adhesion. Marine Drugs, 19(3), 171. https://doi.org/10.3390/md19030171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Li, R., Liu, K., Huang, X., Li, D., Ding, J., Liu, B., & Chen, X. (2022). Bioactive materials promote wound healing through modulation of cell behaviors. Advanced Science, 9(10), 2105152. https://doi.org/10.1002/advs.202105152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Tiwari, V. K. (2012). Burn wound: How it differs from other wounds? Indian Journal of Plastic Surgery, 45(2), 364–373. https://doi.org/10.4103/0970-0358.101319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bonnici, L., Suleiman, S., Schembri-Wismayer, P., & Cassar, A. (2023). Targeting signalling pathways in chronic wound healing. International Journal of Molecular Sciences, 25(1), 50. https://doi.org/10.3390/ijms25010050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Eming, S. A., Martin, P., & Tomic-Canic, M. (2014). Wound repair and regeneration: Mechanisms, signaling, and translation. Science Translational Medicine, 6(265), 265sr6. https://doi.org/10.1126/scitranslmed.3009337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gan, D., Su, Q., Su, H., Wu, L., Chen, J., Han, B., & Xiang, M. (2021). Burn ointment promotes cutaneous wound healing by modulating the PI3K/AKT/mTOR signaling pathway. Frontiers in Pharmacology, 12, 631102. https://doi.org/10.3389/fphar.2021.631102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Diller, R. B., & Tabor, A. J. (2022). The role of the extracellular matrix (ECM) in wound healing: A review. Biomimetics (Basel, Switzerland), 7(3), 87. https://doi.org/10.3390/biomimetics7030087

  76. Ahmed, M. A. M., Ali, M. F., Mohamed, N. M., Bayoumi, S. A. L., Zahran, A. M., & Elsayh, K. I. (2024). Exploring the efficacy of various wheat bran extracts in promoting burn wound healing: A comparative analysis. Journal of Ethnopharmacology, 319, 117174. https://doi.org/10.1016/j.jep.2023.117174

    Article  CAS  PubMed  Google Scholar 

  77. Tasneem, S., Ghufran, H., Azam, M., Arif, A., Bin Umair, M., Yousaf, M. A., … Riazuddin, S. (2024). Cassia Angustifolia primed ASCs accelerate burn wound healing by modulation of inflammatory response. Tissue Engineering and Regenerative Medicine, 21(1), 137–157. https://doi.org/10.1007/s13770-023-00594-1

  78. Ashrafi, B., Chehelcheraghi, F., Rashidipour, M., Hadavand, S., Beiranvand, B., Taherikalani, M., & Soroush, S. (2023). Electrospun nanofibrous biocomposite of royal jelly/chitosan/polyvinyl alcohol (RJ/CS/PVA) gel as a biological dressing for P. aeruginosa—infected burn wound. Applied Biochemistry and Biotechnology. https://doi.org/10.1007/s12010-023-04701-9

  79. Ansari-Asl, Z., Nikpour, S., Sedaghat, T., & Hoveizi, E. (2023). Preparation, characterization, and wound healing assessment of curcumin-loaded M-MOF (M = Cu, Zn)@Polycaprolactone nanocomposite sponges. Applied Biochemistry and Biotechnology, 195(7), 4308–4320. https://doi.org/10.1007/s12010-023-04316-0

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Athmika Nagaraj acknowledges the Department of Biotechnology, Yenepoya (Deemed to be University), and Indian Council of Medical Research (ICMR) (BMI/11(74)/2022) for the fellowship. Athmika Nagaraj also acknowledges the DST-PURSE Laboratory, Mangalore University, for carrying out the FE-SEM analysis.

Funding

This study was funded by the Department of Biotechnology, India (BT/PR15730/AAQ/3/791/2016).

Author information

Authors and Affiliations

Authors

Contributions

Dr. Rekha P. D. contributed to the study’s conception, design, and provided technical inputs for improvising all the versions of the manuscript. Athmika Nagaraj performed material preparation, data collection, analysis and wrote the first draft of the manuscript. The in vivo studies were assisted by Dr. Suprith Surya and Yuvarajan Subramaniyan. All the authors have read and approved the final manuscript.

Corresponding author

Correspondence to Punchappady Devasya Rekha.

Ethics declarations

Ethical Standard

The animal study was performed in accordance with the guidelines given by the Committee for Control and Supervision of Experiments on Animals (CCSEA) and after obtaining approval (10a/31.12.2015) from the institutional animal ethics committee (IAEC) of Yenepoya Research Centre, Yenepoya (Deemed to be University), India.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 832 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagaraj, A., Subramaniyan, Y., Surya, S. et al. Burn Wound Healing Abilities of a Uronic Acid Containing Exopolysaccharide Produced by the Marine Bacterium Halomonas malpeensis YU-PRIM-29 T. Appl Biochem Biotechnol (2024). https://doi.org/10.1007/s12010-024-04966-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12010-024-04966-8

Keywords

Navigation