Skip to main content
Log in

Diagnostic and Prognostic Values of KLF5 and RUNX1 in Acute Kidney Injury in Septic Patients

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Diagnostic and prognostic values of Kruppel-like factor 5 (KLF5) and Runt-related transcription factor 1 (RUNX1) were determined in sepsis-induced acute kidney injury (SI-AKI). The study included 120 septic patients and set two groups: SI-AKI group (n = 60) or non-AKI group (n = 60). Fasting venous blood was drawn, and KLF5 and RUNX1 levels were measured. The receiver operating characteristic curve was plotted for diagnostic evaluation of KLF5 and RUNX1 in SI-AKI. The correlation between KLF5 and RUNX1 and serum creatinine (Scr), cystatin C (Cys-C), and kidney injury molecule 1 (KIM-1) were assessed by Pearson method. Predictive values of KLF5 and RUNX1 in 28-day survival of SI-AKI patients were considered by Kaplan-Meier survival curves and multivariate Cox regression analysis. Serum KLF5 and RUNX1 in SI-AKI patients were upregulated. Serum KLF5 and RUNX1 were of high diagnostic value in distinguishing SI-AKI patients from non-AKI patients. KLF5 and RUNX1 were in a positive correlation with Scr, Cys-C, and KIM-1, respectively. The 28-day survival of SI-AKI patients with high serum KLF5 or RUNX1 expression was poor, and serum KLF5 and RUNX1 expression were independently correlated with SI-AKI patients’ survival. KLF5 and RUNX1 have diagnostic and prognostic values in SI-AKI patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the present study are available from the corresponding author on reasonable request.

References

  1. Zarbock, A., Koyner, J. L., Gomez, H., Pickkers, P., & Forni, L. (2023). Sepsis-associated acute kidney injury-treatment standard. Nephrology Dialysis Transplantation, 39(1), 26–35. https://doi.org/10.1093/ndt/gfad142

    Article  Google Scholar 

  2. Desanti De Oliveira, B., Xu, K., Shen, T. H., et al. (2019). Molecular nephrology: Types of acute tubular injury. Nature Reviews Nephrology, 15(10), 599–612. https://doi.org/10.1038/s41581-019-0184-x

    Article  CAS  PubMed  Google Scholar 

  3. Uchino, S., Kellum, J. A., Bellomo, R., et al. (2005). Acute renal failure in critically ill patients: A multinational, multicenter study. JAMA, 294(7), 813–818. https://doi.org/10.1001/jama.294.7.813

    Article  CAS  PubMed  Google Scholar 

  4. Yu, H., Jin, F., Liu, D., et al. (2020). ROS-responsive nano-drug delivery system combining mitochondria-targeting ceria nanoparticles with atorvastatin for acute kidney injury. Theranostics, 10(5), 2342–2357. https://doi.org/10.7150/thno.40395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kellum, J. A., Chawla, L. S., Keener, C., et al. (2016). The effects of alternative resuscitation strategies on acute kidney injury in patients with septic shock. American Journal of Respiratory and Critical Care Medicine, 193(3), 281–287. https://doi.org/10.1164/rccm.201505-0995OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hoste, E. A., Lameire, N. H., Vanholder, R. C., Benoit, D. D., Decruyenaere, J. M., & Colardyn, F. A. (2003). Acute renal failure in patients with sepsis in a surgical ICU: Predictive factors, incidence, comorbidity, and outcome. Journal of the American Society of Nephrology, 14(4), 1022–1030. https://doi.org/10.1097/01.asn.0000059863.48590.e9

    Article  PubMed  Google Scholar 

  7. Peerapornratana, S., Manrique-Caballero, C. L., Gómez, H., & Kellum, J. A. (2019). Acute kidney injury from sepsis: Current concepts, epidemiology, pathophysiology, prevention and treatment. Kidney International, 96(5), 1083–1099. https://doi.org/10.1016/j.kint.2019.05.026

    Article  PubMed  PubMed Central  Google Scholar 

  8. Baxmann, A. C., Ahmed, M. S., Marques, N. C., et al. (2008). Influence of muscle mass and physical activity on serum and urinary creatinine and serum cystatin C. Clinical journal of the American Society of Nephrology: CJASN, 3(2), 348–354. https://doi.org/10.2215/cjn.02870707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vaidya, V. S., Ferguson, M. A., & Bonventre, J. V. (2008). Biomarkers of acute kidney injury. Annual Review of Pharmacology and Toxicology, 48, 463–493. https://doi.org/10.1146/annurev.pharmtox.48.113006.094615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Murray, P. T., Mehta, R. L., Shaw, A., et al. (2014). Potential use of biomarkers in acute kidney injury: Report and summary of recommendations from the 10th Acute Dialysis Quality Initiative consensus conference. Kidney International, 85(3), 513–521. https://doi.org/10.1038/ki.2013.374

    Article  PubMed  Google Scholar 

  11. Zhang, W. R., & Parikh, C. R. (2019). Biomarkers of acute and chronic kidney disease. Annual Review of Physiology, 81, 309–333. https://doi.org/10.1146/annurev-physiol-020518-114605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bellomo, R., Kellum, J. A., Ronco, C., et al. (2017). Acute kidney injury in sepsis. Intensive Care Medicine, 43(6), 816–828. https://doi.org/10.1007/s00134-017-4755-7

    Article  CAS  PubMed  Google Scholar 

  13. Bihorac, A., Chawla, L. S., Shaw, A. D., et al. (2014). Validation of cell-cycle arrest biomarkers for acute kidney injury using clinical adjudication. American Journal of Respiratory and Critical Care Medicine, 189(8), 932–939. https://doi.org/10.1164/rccm.201401-0077OC

    Article  CAS  PubMed  Google Scholar 

  14. Ostermann, M., McCullough, P. A., Forni, L. G., et al. (2018). Kinetics of urinary cell cycle arrest markers for acute kidney injury following exposure to potential renal insults. Critical Care Medicine, 46(3), 375–383. https://doi.org/10.1097/ccm.0000000000002847

    Article  CAS  PubMed  Google Scholar 

  15. Johnson, A. C. M., & Zager, R. A. (2018). Mechanisms underlying increased TIMP2 and IGFBP7 urinary excretion in experimental AKI. Journal of the American Society of Nephrology, 29(8), 2157–2167. https://doi.org/10.1681/asn.2018030265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pollak, N. M., Hoffman, M., Goldberg, I. J., & Drosatos, K. (2018). Krüppel-like factors: Crippling and un-crippling metabolic pathways. JACC Basic to Translational Science, 3(1), 132–156. https://doi.org/10.1016/j.jacbts.2017.09.001

    Article  PubMed  PubMed Central  Google Scholar 

  17. Conkright, M. D., Wani, M. A., Anderson, K. P., & Lingrel, J. B. (1999). A gene encoding an intestinal-enriched member of the Krüppel-like factor family expressed in intestinal epithelial cells. Nucleic Acids Research, 27(5), 1263–1270. https://doi.org/10.1093/nar/27.5.1263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sogawa, K., Imataka, H., Yamasaki, Y., Kusume, H., Abe, H., & Fujii-Kuriyama, Y. (1993). cDNA cloning and transcriptional properties of a novel GC box-binding protein, BTEB2. Nucleic Acids Research, 21(7), 1527–1532. https://doi.org/10.1093/nar/21.7.1527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li, J., Liu, L., Zhou, W. Q., Cai, L., Xu, Z. G., & Rane, M. J. (2021). Roles of Krüppel-like factor 5 in kidney disease. Journal of Cellular and Molecular Medicine, 25(5), 2342–2355. https://doi.org/10.1111/jcmm.16332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ban, K. Y., Nam, G. Y., Kim, D., Oh, Y. S., & Jun, H. S. (2022). Prevention of LPS-induced acute kidney injury in mice by bavachin and its potential mechanisms. Antioxidants (Basel), 11(11). https://doi.org/10.3390/antiox11112096

  21. Hong, D., Fritz, A. J., Finstad, K. H., et al. (2018). Suppression of breast cancer stem cells and tumor growth by the RUNX1 transcription factor. Molecular Cancer Research: MCR, 16(12), 1952–1964. https://doi.org/10.1158/1541-7786.Mcr-18-0135

    Article  CAS  PubMed  Google Scholar 

  22. Luo, M. C., Zhou, S. Y., Feng, D. Y., et al. (2016). Runt-related transcription factor 1 (RUNX1) binds to p50 in macrophages and enhances TLR4-triggered inflammation and septic shock. Journal of Biological Chemistry, 291(42), 22011–22020. https://doi.org/10.1074/jbc.M116.715953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhou, T., Luo, M., Cai, W., et al. (2018). Runt-related transcription factor 1 (RUNX1) promotes TGF-β-induced renal tubular epithelial-to-mesenchymal transition (EMT) and renal fibrosis through the PI3K subunit p110δ. EBioMedicine, 31, 217–225. https://doi.org/10.1016/j.ebiom.2018.04.023

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zhang, Y., Huang, H., Liu, W., et al. (2021). Endothelial progenitor cells-derived exosomal microRNA-21-5p alleviates sepsis-induced acute kidney injury by inhibiting RUNX1 expression. Cell Death & Disease, 12(4), 335. https://doi.org/10.1038/s41419-021-03578-y

    Article  CAS  Google Scholar 

  25. Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12), 550. https://doi.org/10.1186/s13059-014-0550-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Robinson, M. D., McCarthy, D. J., & Smyth, G. K. (2010). edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26(1), 139–140. https://doi.org/10.1093/bioinformatics/btp616

    Article  CAS  PubMed  Google Scholar 

  27. Singer, M., Deutschman, C. S., Seymour, C. W., et al. (2016). The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA, 315(8), 801–810. https://doi.org/10.1001/jama.2016.0287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mehta, R. L., Kellum, J. A., Shah, S. V., et al. (2007). Acute kidney injury network: Report of an initiative to improve outcomes in acute kidney injury. Critical Care, 11(2), R31. https://doi.org/10.1186/cc5713

    Article  PubMed  PubMed Central  Google Scholar 

  29. Chen, W. Y., Cai, L. H., Zhang, Z. H., et al. (2021). The timing of continuous renal replacement therapy initiation in sepsis-associated acute kidney injury in the intensive care unit: The CRTSAKI study (continuous RRT timing in sepsis-associated AKI in ICU): Study protocol for a multicentre, randomised controlled trial. BMJ Open, 11(2), e040718. https://doi.org/10.1136/bmjopen-2020-040718

    Article  PubMed  PubMed Central  Google Scholar 

  30. He, F. F., Wang, Y. M., Chen, Y. Y., Huang, W., Li, Z. Q., & Zhang, C. (2022). Sepsis-induced AKI: From pathogenesis to therapeutic approaches. Frontiers in Pharmacology, 13, 981578. https://doi.org/10.3389/fphar.2022.981578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cobussen, M., Verhave, J. C., Buijs, J., & Stassen, P. M. (2023). The incidence and outcome of AKI in patients with sepsis in the emergency department applying different definitions of AKI and sepsis. International Urology and Nephrology, 55(1), 183–190. https://doi.org/10.1007/s11255-022-03267-5

    Article  PubMed  Google Scholar 

  32. Rane, M. J., Zhao, Y., & Cai, L. (2019). Krϋppel-like factors (KLFs) in renal physiology and disease. EBioMedicine, 40, 743–750. https://doi.org/10.1016/j.ebiom.2019.01.021

    Article  PubMed  PubMed Central  Google Scholar 

  33. Formica, C., Malas, T., Balog, J., Verburg, L., t’Hoen, P. A. C., & Peters, D. J. M. (2019). Characterisation of transcription factor profiles in polycystic kidney disease (PKD): Identification and validation of STAT3 and RUNX1 in the injury/repair response and PKD progression. Journal of Molecular Medicine, 97(12), 1643–1656. https://doi.org/10.1007/s00109-019-01852-3

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

J Hu designed the research study. Y Lin and Y Wang performed the research. Y Shi and X Shi provided help and advice on the experiments. J Hu and B Wu analyzed the data. J Hu wrote the manuscript. B Wu reviewed and edited the manuscript. All authors contributed to editorial changes in the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to BenQuan Wu.

Ethics declarations

Ethics Approval and Consent to Participate

The present study was approved by the Ethics Committee of The Third Affiliated Hospital of Sun Yat-sen University, and written informed consent was provided by all patients prior to the study start. All procedures were performed in accordance with the ethical standards of the Institutional Review Board and The Declaration of Helsinki, and its later amendments or comparable ethical standards.

Consent for Publication

Written informed consent for publication was obtained from all participants.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

Supplementary Figure 1 Results of bioinformatics analysis. A: Differentially expressed genes between Non-AKI and SI-AKI; B-C: KLF5 and RUNX1 were significantly upregulated in SI-AKI. (TIF 3430 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, J., Lin, Y., Wang, Y. et al. Diagnostic and Prognostic Values of KLF5 and RUNX1 in Acute Kidney Injury in Septic Patients. Appl Biochem Biotechnol (2024). https://doi.org/10.1007/s12010-024-04956-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12010-024-04956-w

Keywords

Navigation