Skip to main content
Log in

The Potential of Fish Protein Hydrolysate Supplementation in Nile Tilapia Diets: Effects on Growth and Health Performance, Disease Resistance, and Farm Economic Analysis

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Fish protein hydrolysate (FPH) has shown immense potential as a dietary protein supplement and immunostimulant in aquaculture, especially in Nile tilapia production. Four isoproteic diets (30% crude protein) were prepared by including FPH at varying percentages (0%, 0.5%, 1%, and 2%). Nile tilapia fed with FPH diets for 90 days, and their growth performance, feed utilization, blood biochemistry, liver and gut morphology, and resistance against Streptococcus iniae were investigated. The findings revealed that diets physical attributes such as pellet durability index and water stability were remarkably (p < 0.05) varied between experimental diet groups. Furthermore, the test diets were more palatable when FPH was included at 1% and 2%. Fish that were fed with a 2% FPH-treated diet had significantly (p < 0.05) greater growth indices than other treatments. Additionally, their feed utilization was significantly (p < 0.05) improved. The experimental diets and intestinal total bacteria count (TBC) exhibited a rising trend with FPH levels, where the 2% FPH-treated diet recorded the highest TBC. Neutrophil (109/L), lymphocyte (109/L), eosinophil (109/L), and red blood cell(1012/L) counts were significantly (p < 0.05) higher in the 2% FPH-treated group, while the white blood cell (109/L), and basophil (109/L) counts were not influenced by the FPH inclusion. Moreover, the FPH-treated groups displayed lower creatinine, bilirubin, and urea levels than the control. The histological examination demonstrated that themid-intestine of 2% FPH-fed Nile tilapia had an unbroken epithelial wall, more villi with frequent distribution of goblet cells, wider tunica muscularis, and stronger stratum compactum bonding than other treatments. Additionally, this group exhibited more nuclei and erythrocytes and less vacuolar cytoplasm in liver than their counterparts. Nile tilapia that were given a diet containing 2% FPH had significantly (p < 0.05) higher resistance (83.33%) to S. iniae during the bacterial challenge test. A significant (p < 0.05) enhancement in farm economic efficiency was observed in the higher inclusion of FPH in diets. In summary, 2% FPH supplementation in Nile tilapia diets improved their growth performance, feed utilization, health status, disease resistance, and farm economic efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The data that supported the findings of this study are available on request from the corresponding author.

References

  1. Jahan, N., Islam, S. M. M., Rohani, M. F., Hossain, M. T., & Shahjahan, M. (2021). Probiotic yeast enhances growth performance of rohu (Labeo rohita) through upgrading hematology, and intestinal microbiota and morphology. Aquaculture. 545, p. 737243.

  2. Kroeckel, S., Harjes, A. G., Roth, I., Katz, H., Wuertz, S., Susenbeth, A., & Schulz, C. (2012). When a turbot catches a fly: Evaluation of a pre-pupae meal of the Black Soldier Fly (Hermetia illucens) as fish meal substitute—Growth performance and chitin degradation in juvenile turbot (Psetta maxima). Aquaculture. 364, p. 345–352.

  3. Kumar, P., Jain, K. K., MunilKumar, S., & Sudhagar, S. A. (2017). Alternate feeding strategies for optimum nutrient utilization and reducing feed cost for semi-intensive practices in aquaculture system-A review. Agricultural Reviews, 38(2), 145–151.

    Article  CAS  Google Scholar 

  4. Daniel, N. (2018). A review on replacing fish meal in aqua feeds using plant protein sources. International Journal of Fisheries and Aquatic Studies, 6(2), 164–179.

    Google Scholar 

  5. Kari, Z. A., Kabir, M. A., Mat, K., Rusli, N. D., Razab, M. K. A. A., Ariff, N. S. N. A., Edinur, H. A., Rahim, M. Z. A., Pati, S., & Dawood, M. A. (2021). The possibility of replacing fish meal with fermented soy pulp on the growth performance, blood biochemistry, liver, and intestinal morphology of African catfish (Clarias gariepinus). Aquaculture Reports. 21, p. 100815.

  6. Kari, Z. A., Kabir, M. A., Dawood, M. A., Razab, M. K. A. A., Ariff, N. S. N. A., Sarkar, T., Pati, S., Edinur, H. A., Mat, K., & Ismail, T. A. (2022). Effect of fish meal substitution with fermented soy pulp on growth performance, digestive enzyme, amino acid profile, and immune-related gene expression of African catfish (Clarias gariepinus). Aquaculture. 546, p. 737418.

  7. Sharawy, Z., Goda, A. M. S., & Hassaan, M. S. (2016). Partial or total replacement of fish meal by solid state fermented soybean meal with Saccharomyces cerevisiae in diets for Indian prawn shrimp, Fenneropenaeus indicus, Postlarvae. Animal Feed Science and Technology, 212, 90–99.

    Article  CAS  Google Scholar 

  8. Dawood, M. A. O., & Kari, Z. A. (2024). Editorial special issue: Friendly nutritional strategies for sustainable aquaculture. Aquaculture and Fisheries, 9(1), 1–2.

    Article  Google Scholar 

  9. Habotta, O. A., Dawood, M. A., Kari, Z. A., Tapingkae, W., & Van Doan, H. (2022). Antioxidative and immunostimulant potential of fruit derived biomolecules in aquaculture. Fish & Shellfish Immunology, 130, 317–322.

    Article  Google Scholar 

  10. Mat, K., Abdul Kari, Z., Rusli, N. D., Harun, C., Wei, H., Rahman, L. S., Khalid, M. M. M., Hanafiah, H. N. M. A., & Sukri, M. H. M. (2022a). Coconut Palm: Food, feed, and Nutraceutical properties. Animals, 12(16), 2107. & Raja Khalif, R.I.A.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kari, Z. A., Goh, K. W., Edinur, H. A., Mat, K., Khalid, H. N. M., Rusli, N. D., Sukri, S. A. M., Harun, H. C., Wei, L. S., & Hanafiah, M. H. (2022). Palm date meal as a non-traditional ingredient for feeding aquatic animals: A review. Aquaculture Reports, 25, 101233. B.M.A.

    Article  Google Scholar 

  12. Abdel-Latif, H. M., El-Ashram, S., Yilmaz, S., Naiel, M. A., Kari, Z. A., Hamid, N. K. A., Dawood, M. A., Nowosad, J., & Kucharczyk, D. (2022). The effectiveness of Arthrospira platensis and microalgae in relieving stressful conditions affecting finfish and shellfish species: An overview. Aquaculture Reports, 24, 101135.

    Article  Google Scholar 

  13. Dawood, M. A. O., Habotta, O. A. E., Elsabagh, M., Azra, M. N., Van Doan, H., Kari, Z. A., & Sewilam, H. Fruit processing by-products in the aquafeed industry: A feasible strategy for aquaculture sustainability. Reviews in Aquaculture. n/a(n/a).

  14. Shekarabi, S. P. H., Mehrgan, M. S., Ramezani, F., Dawood, M. A., Van Doan, H., Moonmanee, T., Hamid, N. K. A., & Kari, Z. A. (2022). Effect of dietary barberry fruit (Berberis vulgaris) extract on immune function, antioxidant capacity, antibacterial activity, and stress-related gene expression of Siberian sturgeon (Acipenser baerii). Aquaculture Reports. 23, p. 101041.

  15. Kari, Z. A., Kabir, M. A., Dawood, M. A., Razab, M. K. A. A., Ariff, N. S. N. A., Sarkar, T., Pati, S., Edinur, H. A., Mat, K., & Ismail, T. A. (2022). Effect of fish meal substitution with fermented soy pulp on growth performance, digestive enzyme, amino acid profile, and immune-related gene expression of African catfish (Clarias gariepinus). Aquaculture. 546, p. 737418.

  16. Sukri, S. A. M., Andu, Y., Harith, Z. T., Sarijan, S., Pauzi, M. N. F., Wei, L. S., Dawood, M. A., & Kari, Z. A. (2022). Effect of feeding pineapple waste on growth performance, texture quality and flesh colour of nile tilapia (Oreochromis niloticus) fingerlings. Saudi Journal of Biological Sciences, 29(4), 2514–2519.

    Article  Google Scholar 

  17. Azri, N. A. M., Chun, L. K., Hasan, H. A., Jaya-Ram, A., Kari, Z. A., & Hamid, N. K. A. (2022). The effects of partial replacement of fishmeal with hermetia meal on the growth and fatty acid profile of African catfish fry. Agriculture Reports, 1(1), 17–27.

    Google Scholar 

  18. Hamid, N. K. A., Somdare, P. O., Md Harashid, K. A., Othman, N. A., Kari, Z. A., Wei, L. S., & Dawood, M. A. O. (2022). Effect of papaya (Carica papaya) leaf extract as dietary growth promoter supplement in red hybrid tilapia (Oreochromis mossambicus × Oreochromis niloticus) diet. Saudi Journal of Biological Sciences, 29(5), 3911–3917.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Yang, P., Ke, H., Hong, P., Zeng, S., & Cao, W. (2011). Antioxidant activity of bigeye tuna (Thunnus obesus) head protein hydrolysate prepared with Alcalase. International Journal of Food Science & Technology, 46(12), 2460–2466.

    Article  CAS  Google Scholar 

  20. Chalamaiah, M., Hemalatha, R., & Jyothirmayi, T. (2012). Fish protein hydrolysates: Proximate composition, amino acid composition, antioxidant activities and applications: A review. Food Chemistry, 135(4), 3020–3038.

    Article  CAS  PubMed  Google Scholar 

  21. Venugopal, V. (2016). Enzymes from seafood processing waste and their applications in seafood processing. Advances in food and nutrition research. 78, p. 47–69.

  22. Zamora-Sillero, J., Gharsallaoui, A., & Prentice, C. (2018). Peptides from fish by-product protein hydrolysates and its functional properties: An overview. Marine Biotechnology, 20(2), 118–130.

    Article  CAS  PubMed  Google Scholar 

  23. Siddik, M. A., Howieson, J., Fotedar, R., & Partridge, G. J. (2021). Enzymatic fish protein hydrolysates in finfish aquaculture: A review. Reviews in Aquaculture, 13(1), 406–430.

    Article  Google Scholar 

  24. Önal, U., & Langdon, C. (2009). Potential delivery of water-soluble protein hydrolysates to marine suspension feeders by three different microbound particle types. Aquaculture, 296(1–2), 174–178.

    Article  Google Scholar 

  25. Ospina-Salazar, G., Ríos-Durán, M., Toledo-Cuevas, E., & Martínez-Palacios, C. (2016). The effects of fish hydrolysate and soy protein isolate on the growth performance, body composition and digestibility of juvenile pike silverside, Chirostoma estor. Animal Feed Science and Technology, 220, 168–179.

    Article  CAS  Google Scholar 

  26. Kang, H. K., Lee, H. H., Seo, C. H., & Park, Y. (2019). Antimicrobial and immunomodulatory properties and applications of marine-derived proteins and peptides. Marine Drugs, 17(6), 350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yaghoubzadeh, Z., Peyravii Ghadikolaii, F., Kaboosi, H., Safari, R., & Fattahi, E. (2020). Antioxidant activity and anticancer effect of bioactive peptides from rainbow trout (Oncorhynchus mykiss) skin hydrolysate. International Journal of Peptide Research and Therapeutics, 26(1), 625–632.

    Article  CAS  Google Scholar 

  28. Bhaskar, N., Sudeepa, E., Rashmi, H., & Selvi, A. T. (2007). Partial purification and characterization of protease of Bacillus proteolyticus CFR3001 isolated from fish processing waste and its antibacterial activities. Bioresource Technology, 98(14), 2758–2764.

    Article  CAS  PubMed  Google Scholar 

  29. Gajanan, P. G., Elavarasan, K., & Shamasundar, B. A. (2016). Bioactive and functional properties of protein hydrolysates from fish frame processing waste using plant proteases. Environmental Science and Pollution Research, 23(24), 24901–24911.

    Article  CAS  PubMed  Google Scholar 

  30. Leal, A. L. G., de Castro, P. F., de Lima, J. P. V., de Souza Correia, E., & de Souza Bezerra, R. (2010). Use of shrimp protein hydrolysate in Nile tilapia (Oreochromis niloticus, L.) feeds. Aquaculture International, 18(4), 635–646.

    Article  Google Scholar 

  31. Goosen, N., De Wet, L., & Görgens, J. (2015). Comparison of hydrolysed proteins from different raw materials in diets for Mozambique tilapia Oreochromis mossambicus. Aquaculture International, 23(5), 1165–1178.

    Article  CAS  Google Scholar 

  32. Savoie, A., Le François, N. R., Cahu, C., Blier, P. U., & Andreassen, I. (2006). Do protein hydrolysates improve survival and growth of newly-hatched spotted wolffish (Anarhichas minor), a non-metamorphic aquaculture fish species? Aquaculture. 261(2), p. 782–788.

  33. Suma, A. Y., Nandi, S. K., Abdul Kari, Z., Goh, K. W., Wei, L. S., Tahiluddin, A. B., Seguin, P., Herault, M., Al Mamun, A., Téllez-Isaías, G., & Kabir, A., M (2023). Beneficial effects of graded levels of fish protein hydrolysate (FPH) on the growth performance, Blood Biochemistry, liver and Intestinal Health, Economics Efficiency, and Disease Resistance to Aeromonas hydrophila of Pabda (Ompok pabda) fingerling. Fishes, 8(3), 147.

    Article  Google Scholar 

  34. Masuda, Y., Jinbo, T., Imaizumi, H., Furuita, H., Matsunari, H., Murashita, K., Fujimoto, H., Nagao, J., & Kawakami, Y. (2013). A step forward in development of fish protein hydrolysate-based diets for larvae of Japanese eel Anguilla japonica. Fisheries Science, 79(4), 681–688.

    Article  CAS  Google Scholar 

  35. Yuan, Y., Yuan, Y., Dai, Y., & Gong, Y. (2017). Economic profitability of tilapia farming in China. Aquaculture International, 25(3), 1253–1264.

    Article  Google Scholar 

  36. Yakubu, A. F., Nwogu, N. A., Apochi, J. O., Olaji, E. D., & Adams, T. E. (2014). Economic profitability of Nile tilapia (Oreochromis niloticus Linnaeus 1757) in semi flow through culture system. Journal of Aquatic Science, 2(1), 1–4.

    Google Scholar 

  37. Islam, S. M. M., Rohani, M. F., & Shahjahan, M. (2021). Probiotic yeast enhances growth performance of Nile tilapia (Oreochromis niloticus) through morphological modifications of intestine. Aquaculture Reports, 21, 100800.

    Article  Google Scholar 

  38. Rohani, M. F., Islam, S. M. M., Hossain, M. K., Ferdous, Z., Siddik, M. A. B., Nuruzzaman, M., Padeniya, U., Brown, C., & Shahjahan, M. (2022). Probiotics, prebiotics and synbiotics improved the functionality of aquafeed: Upgrading growth, reproduction, immunity and disease resistance in fish. Fish & Shellfish Immunology, 120, 569–589.

    Article  CAS  Google Scholar 

  39. Munguti, J. M., Nairuti, R., Iteba, J. O., Obiero, K. O., Kyule, D., Opiyo, M. A., Abwao, J., Kirimi, J. G., Outa, N., Muthoka, M., Githukia, C. M., & Ogello, E. O. (2022). Nile tilapia (Oreochromis niloticus Linnaeus, 1758) culture in Kenya: Emerging production technologies and socio-economic impacts on local livelihoods. Aquaculture Fish and Fisheries, 2(4), 265–276.

    Article  Google Scholar 

  40. Chemists, A. O. A., & Horwitz, W. (1975). Official methods of analysis (Vol. 222). Association of Official Analytical Chemists Washington, DC.

    Google Scholar 

  41. Zulhisyam, A. K., Kabir, M. A., Munir, M. B., & Wei, L. S. (2020). Using of fermented soy pulp as an edible coating material on fish feed pellet in African catfish (Clarias gariepinus) production. Aquaculture, Aquarium, Conservation & Legislation. 13(1), p. 296–308.

  42. Abdul Kari, Z., Kabir, M. A., Mat, K., Rusli, N. D., Razab, M. K. A. A., Ariff, N. S. N. A., Edinur, H. A., Rahim, M. Z. A., Pati, S., Dawood, M. A. O., & Wei, L. S. (2021). The possibility of replacing fish meal with fermented soy pulp on the growth performance, blood biochemistry, liver, and intestinal morphology of African catfish (Clarias gariepinus). Aquaculture Reports. 21, p. 100815.

  43. Reed, L. J., & Muench, H. (1938). A simple method of estimating fifty per cent endpoints. American Journal of Epidemiology, 27(3), 493–497.

    Article  Google Scholar 

  44. Khater, E. S. G., Bahnasawy, A. H., & Ali, S. A. (2014). Physical and mechanical properties of fish feed pellets. Journal of Food Processing & Technology, 5(10), 1.

    Google Scholar 

  45. Saalah, S., Shapawi, R., Othman, N., & Bono, A. (2010). Effect of formula variation in the properties of fish feed pellet. Journal of Applied Sciences, 10(21), 2537–2543.

    Article  ADS  CAS  Google Scholar 

  46. Syamsu, J. A., Yusuf, M., & Abdullah, A. (2015). Evaluation of physical properties of feedstuffs in supporting the development of feed mill at farmers group scale. Journal of Advanced Agricultural Technologies. 2(2).

  47. Chotikachinda, R., Tantikitti, C., Benjakul, S., Rustad, T., & Kumarnsit, E. (2013). Production of protein hydrolysates from skipjack tuna (Katsuwonus pelamis) viscera as feeding attractants for Asian seabass (Lates calcarifer). Aquaculture Nutrition, 19(5), 773–784.

    Article  CAS  Google Scholar 

  48. Teoh, C. Y., & Wong, Y. Y. (2021). Use of fish and shrimp hydrolysates as dietary supplements to increase feeding and growth of juvenile striped catfish (Pangasius hypophthalmus). Aquaculture International, 29(4), 1885–1894.

    Article  CAS  Google Scholar 

  49. Bui, H. T. D., Khosravi, S., Fournier, V., Herault, M., & Lee, K. J. (2014). Growth performance, feed utilization, innate immunity, digestibility and disease resistance of juvenile red seabream (Pagrus major) fed diets supplemented with protein hydrolysates. Aquaculture. 418, p. 11–16.

  50. Ovissipour, M., Abedian Kenari, A., Nazari, R., Motamedzadegan, A., & Rasco, B. (2014). Tuna viscera protein hydrolysate: Nutritive and disease resistance properties for persian sturgeon (Acipenser persicus L.) larvae. Aquaculture Research, 45(4), 591–601.

    Article  CAS  Google Scholar 

  51. Xu, H., Mu, Y., Zhang, Y., Li, J., Liang, M., Zheng, K., & Wei, Y. (2016). Graded levels of fish protein hydrolysate in high plant diets for turbot (Scophthalmus maximus): Effects on growth performance and lipid accumulation. Aquaculture. 454, p. 140–147.

  52. Siddik, M. A., Howieson, J., Ilham, I., & Fotedar, R. (2018). Growth, biochemical response and liver health of juvenile barramundi (Lates calcarifer) fed fermented and non-fermented tuna hydrolysate as fishmeal protein replacement ingredients. PeerJ, 6, e4870.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Siddik, M. A., Howieson, J., Partridge, G. J., Fotedar, R., & Gholipourkanani, H. (2018). Dietary tuna hydrolysate modulates growth performance, immune response, intestinal morphology and resistance to Streptococcus iniae in juvenile barramundi, lates calcarifer. Scientific Reports, 8(1), 1–13.

    Article  Google Scholar 

  54. Fronte, B., Abramo, F., Brambilla, F., De Zoysa, M., & Miragliotta, V. (2019). Effect of hydrolysed fish protein and autolysed yeast as alternative nitrogen sources on gilthead sea bream (Sparus aurata) growth performances and gut morphology. Italian Journal of Animal Science, 18(1), 799–808.

    Article  CAS  Google Scholar 

  55. Siddik, M. A., Howieson, J., & Fotedar, R. (2019). Beneficial effects of tuna hydrolysate in poultry by-product meal diets on growth, immune response, intestinal health and disease resistance to Vibrio harveyi in juvenile barramundi, Lates calcarifer. Fish & shellfish immunology. 89, p. 61–70.

  56. Khieokhajonkhet, A., & Surapon, K. (2020). Effects of fish protein hydrolysate on the growth performance, feed and protein utilization of Nile tilapia (Oreochromis niloticus). International Journal of Agricultural Technology, 16(3), 641–654.

    CAS  Google Scholar 

  57. Chaklader, M. R., Howieson, J., Siddik, M. A., Foysal, M. J., & Fotedar, R. (2021). Supplementation of tuna hydrolysate and insect larvae improves fishmeal replacement efficacy of poultry by-product in Lates calcarifer (Bloch, 1790) juveniles. Scientific reports. 11(1), p. 1–20.

  58. Kwasek, K., Gonzalez, C., Wick, M., Molinari, G. S., & Wojno, M. (2021). Fish muscle hydrolysate obtained using largemouth bass Micropterus salmoides digestive enzymes improves largemouth bass performance in its larval stages. Plos One, 16(12), e0261847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bae, J., Song, Y., Moniruzzaman, M., Hamidoghli, A., Lee, S., Je, H., Choi, W., Min, T., & Bai, S. C. (2021). Evaluation of dietary soluble extract hydrolysates with or without supplementation of inosine monophosphate based on growth, hematology, non-specific immune responses and disease resistance in juvenile Nile Tilapia Oreochromis Niloticus. Animals, 11(4), 1107.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Pham, H. D., Siddik, M. A., Van Phan, U., Le, H. M., & Rahman, M. A. (2021). Enzymatic tuna hydrolysate supplementation modulates growth, nutrient utilisation and physiological response of pompano (Trachinotus blochii) fed high poultry-by product meal diets. Aquaculture Reports, 21, 100875.

    Article  Google Scholar 

  61. Pham, H. D., Siddik, M. A., Le, H. M., Ngo, M. V., Nguyen, M. V., & Francis, D. (2022). Effects of dietary tuna viscera hydrolysate supplementation on growth, intestinal mucosal response, and resistance to streptococcus iniae infection in pompano (Trachinotus blochii). Aquaculture Nutrition. 2022.

  62. Krogdahl, Å., Hemre, G. I., & Mommsen, T. (2005). Carbohydrates in fish nutrition: Digestion and absorption in postlarval stages. Aquaculture Nutrition, 11(2), 103–122.

    Article  CAS  Google Scholar 

  63. Yong, Y., Shin, S. Y., Jung, Y., Jung, H., Ahn, S., Chong, Y., & Lim, Y. (2015). Flavonoids activating adenosine monophosphate-activated protein kinase. Journal of the Korean Society for Applied Biological Chemistry, 58(1), 13–19.

    Article  CAS  Google Scholar 

  64. Akter, M., Sutriana, A., Talpur, A. D., & Hashim, R. (2016). Dietary supplementation with mannan oligosaccharide influences growth, digestive enzymes, gut morphology, and microbiota in juvenile striped catfish, Pangasianodon Hypophthalmus. Aquaculture International, 24(1), 127–144.

    Article  CAS  Google Scholar 

  65. Kabir, M. A., Ghaedi, A., Talpur, A. D., & Hashim, R. (2015). Effect of dietary protein levels on reproductive development and distribution of amino acids in the body tissues of female Pangasianodon hypophthalmus (Sauvage, 1878) broodstock in captivity. Aquaculture Research, 46(7), 1736–1747.

    Article  CAS  Google Scholar 

  66. Dawood, M. A. O., Koshio, S., Ishikawa, M., & Yokoyama, S. (2016). Effects of dietary inactivated Pediococcus pentosaceus on growth performance, feed utilization and blood characteristics of red sea bream, Pagrus major juvenile. Aquaculture Nutrition, 22(4), 923–932.

    Article  CAS  Google Scholar 

  67. Kotzamanis, Y., Gisbert, E., Gatesoupe, F., Infante, J. Z., & Cahu, C. (2007). Effects of different dietary levels of fish protein hydrolysates on growth, digestive enzymes, gut microbiota, and resistance to Vibrio anguillarum in European sea bass (Dicentrarchus labrax) larvae. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 147(1), 205–214.

    Article  CAS  Google Scholar 

  68. Ebrahimnezhadarabi, M., Changizi, R., Hoseinifard, S., Vatandoust, S., & Ghobadi, S. (2021). Effects of canola protein hydrolysate (CPH) on growth performance, blood biochemistry, immunity, and gastrointestinal microbiota of beluga (Huso huso) juveniles. Iranian Journal of Fisheries Sciences, 20(4), 1165–1178.

    Google Scholar 

  69. Vázquez, G. R., & Guerrero, G. (2007). Characterization of blood cells and hematological parameters in Cichlasoma dimerus (Teleostei, Perciformes). Tissue and cell, 39(3), 151–160.

    Article  Google Scholar 

  70. Ribeiro, M. S., Fonseca, F. A. L., Queiroz, M. N., Affonso, E. G., Conceição, L. E. C.d., & Gonçalves, L. U. (Eds.). (2017). Fish protein hydrolysate as an ingredient in diets for Arapaima gigas juveniles. Volume 43, Pags. 1–10.

  71. Khosravi, S., Bui, H., Rahimnejad, S., Herault, M., Fournier, V., Jeong, J., & Lee, K. J. (2015). Effect of dietary hydrolysate supplementation on growth performance, non-specific immune response and disease resistance of olive flounder (Paralichthys olivaceus) challenged with Edwardsiella tarda. Aquaculture Nutrition, 21(3), 321–331.

    Article  CAS  Google Scholar 

  72. Khosravi, S., Bui, H. T. D., Rahimnejad, S., Herault, M., Fournier, V., Kim, S. S., Jeong, J. B., & Lee, K. J. (2015). Dietary supplementation of marine protein hydrolysates in fish-meal based diets for red sea bream (Pagrus major) and olive flounder (Paralichthys olivaceus). Aquaculture. 435, p. 371–376.

  73. Chaklader, M. R., Fotedar, R., Howieson, J., Siddik, M. A., & Foysal, M. J. (2020). The ameliorative effects of various fish protein hydrolysates in poultry by-product meal based diets on muscle quality, serum biochemistry and immunity in juvenile barramundi, lates calcarifer. Fish & Shellfish Immunology, 104, 567–578.

    Article  CAS  Google Scholar 

  74. Nya, E. J., & Austin, B. (2009). Use of garlic, Allium sativum, to control Aeromonas hydrophila infection in rainbow trout, Oncorhynchus mykiss (Walbaum). Journal of fish Diseases, 32(11), 963–970.

    Article  CAS  PubMed  Google Scholar 

  75. Rahman, M., Mamun, M. A. A., Rathore, S. S., Nandi, S. K., Abdul Kari, Z., Wei, L. S., Tahiluddin, A. B., Rahman, M. M., Manjappa, N. K., Hossain, A., Nasren, S., Alam, M. M. M., Bottje, W. G., Téllez-Isaías, G., & Kabir, M. A. (2023). Effects of dietary supplementation of natural Spirulina on growth performance, hemato-biochemical indices, gut health, and disease resistance to Aeromonas hydrophila of Stinging catfish (Heteropneustes fossilis) fingerling. Aquaculture Reports. 32, p. 101727.

  76. Adeoye, A. A., Yomla, R., Jaramillo-Torres, A., Rodiles, A., Merrifield, D. L., & Davies, S. J. (2016). Combined effects of exogenous enzymes and probiotic on Nile tilapia (Oreochromis niloticus) growth, intestinal morphology and microbiome. Aquaculture. 463, p. 61–70.

  77. Apper, E., Weissman, D., Respondek, F., Guyonvarch, A., Baron, F., Boisot, P., Rodiles, A., & Merrifield, D. (2016). Hydrolysed wheat gluten as part of a diet based on animal and plant proteins supports good growth performance of Asian seabass (Lates calcarifer), without impairing intestinal morphology or microbiota. Aquaculture, 453, 40–48.

    Article  CAS  Google Scholar 

  78. Siddik, M. A., Foysal, M. J., Fotedar, R., Francis, D. S., & Gupta, S. K. (2022). Probiotic yeast Saccharomyces cerevisiae coupled with Lactobacillus casei modulates physiological performance and promotes gut microbiota in juvenile barramundi, Lates calcarifer. Aquaculture. 546, p. 737346.

  79. Khosravi, S., Bui, H. T. D., Herault, M., Fournier, V., Kim, K. D., Lee, B. J., Kim, K. W., & Lee, K. J. (2018). Supplementation of protein hydrolysates to a low-fishmeal diet improves growth and health status of juvenile olive flounder, Paralichthys olivaceus. Journal of the World Aquaculture Society, 49(5), 897–911.

    Article  CAS  Google Scholar 

  80. Egerton, S., Wan, A., Murphy, K., Collins, F., Ahern, G., Sugrue, I., Busca, K., Egan, F., Muller, N., & Whooley, J. (2020). Replacing fishmeal with plant protein in Atlantic salmon (Salmo salar) diets by supplementation with fish protein hydrolysate. Scientific Reports, 10(1), 1–16.

    Article  Google Scholar 

  81. Dimitroglou, A., Merrifield, D., Moate, R., Davies, S., Spring, P., Sweetman, J., & Bradley, G. (2009). Dietary mannan oligosaccharide supplementation modulates intestinal microbial ecology and improves gut morphology of rainbow trout, Oncorhynchus mykiss (Walbaum). Journal of Animal Science, 87(10), 3226–3234.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The research article is a collaboration between Universiti Malaysia Kelantan, Sylhet Agricultural University, Symrise Aqua Feed of Taste, Nutrition & Health Segment of the Symrise AG group, France, and the University of Arkansas, USA. This collaboration ispart of Advanced Livestock and Aquaculture Research Group (ALAReG) planning under the Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus.

Funding

The project was funded by Symrise Aqua Feed research grant of France with the Adyanagro-Bangladesh for feed preparation logistic facilities to conduct this research under the Aquaculture Department and Sylhet Agricultural University Research System (SAURES), Bangladesh, and supported by the Ministry of Higher Education, Malaysia, under the Fundamental Research Grant Scheme (FRGS) (R/FRGS/A0700/00778A/003/2022/01076).

Author information

Authors and Affiliations

Authors

Contributions

M.A.K wrote the main manuscript. S.K.N., A.Y.S., Z.A.K., L.S.W., A.A.M., P.S., M.H., M.I.K., S.A.M.S., and G.T.I involve in editing and polishing the manuscript.All authors reviewed the manuscript.

Corresponding authors

Correspondence to Muhammad Anamul Kabir or Zulhisyam Abdul Kari.

Ethics declarations

Ethical Approval

The experiments were approved by Animal Ethics Committee of Sylhet Agricultural University, and performed according to the Animal Ethics Procedures and Guidelines of the People’s Republic of Bangladesh.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kabir, M.A., Nandi, S.K., Suma, A.Y. et al. The Potential of Fish Protein Hydrolysate Supplementation in Nile Tilapia Diets: Effects on Growth and Health Performance, Disease Resistance, and Farm Economic Analysis. Appl Biochem Biotechnol (2024). https://doi.org/10.1007/s12010-024-04913-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12010-024-04913-7

Keywords

Navigation