Skip to main content
Log in

XylR Overexpression in Escherichia coli Alleviated Transcriptional Repression by Arabinose and Enhanced Xylitol Bioproduction from Xylose Mother Liquor

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Xylitol is a polyol widely used in food, pharmaceuticals, and light industries. It is currently produced through the chemical catalytic hydrogenation of xylose and generates xylose mother liquor as a substantial byproduct in the procedure of xylose extraction. If xylose mother liquor could also be efficiently bioconverted to xylitol, the greenness and atom economy of xylitol production would be largely improved. However, xylose mother liquor contains a mixture of glucose, xylose, and arabinose, raising the issue of carbon catabolic repression in its utilization by microbial conversion. Targeting this challenge, the transcriptional activator XylR was overexpressed in a previously constructed xylitol-producing E. coli strain CPH. The resulting strain CPHR produced 16.61 g/L of xylitol in shake-flask cultures from the mixture of corn cob hydrolysate and xylose mother liquor (1:1, v/v) with a xylose conversion rate of 90.1%, which were 2.23 and 2.15 times higher than the starting strain, respectively. Furthermore, XylR overexpression upregulated the expression levels of xylE, xylF, xylG, and xylH genes by 2.08–2.72 times in arabinose-containing medium, suggesting the alleviation of transcriptional repression of xylose transport genes by arabinose. This work lays the foundation for xylitol bioproduction from xylose mother liquor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Original data generated in this study are available from the corresponding author on reasonable request.

Abbreviations

HPLC:

High-Performance Liquid Chromatography

PCR:

Polymerase Chain Reaction

GFP:

Green Fluorescent Protein

CCR:

Carbon Catabolite Repression

CRP:

Cyclic AMP Receptor Protein

References

  1. Bozell, J. J., & Petersen, G. R. (2010). Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “top 10” revisited. Green Chemistry, 12(4), 539–555. https://doi.org/10.1039/b922014c

    Article  CAS  Google Scholar 

  2. Wei, J., Yuan, Q., Wang, T., & Wang, L. (2010). Purification and crystallization of xylitol from fermentation broth of corncob hydrolysates. Frontiers of Chemical Engineering in China, 4(1), 57–64. https://doi.org/10.1007/s11705-009-0295-1

    Article  ADS  CAS  Google Scholar 

  3. Delgado Arcaño, Y., Valmaña García, O. D., Mandelli, D., Carvalho, W. A., & Magalhães Pontes, L. A. (2020). Xylitol: A review on the progress and challenges of its production by chemical route. Catalysis Today, 344, 2–14. https://doi.org/10.1016/j.cattod.2018.07.060

    Article  CAS  Google Scholar 

  4. Barathikannan, K., & Agastian, P. (2016). Xylitol: Production, optimization and industrial application. International Journal of Current Microbiology and Applied Sciences, 5(9), 324–339. https://doi.org/10.20546/ijcmas.2016.509.036

    Article  CAS  Google Scholar 

  5. Wang, H., Li, L., Zhang, L., An, J., Cheng, H., & Deng, Z. (2016). Xylitol production from waste xylose mother liquor containing miscellaneous sugars and inhibitors: One-pot biotransformation by Candida tropicalis and recombinant Bacillus subtilis. Microbial Cell Factories, 15(1), 1–12. https://doi.org/10.1186/s12934-016-0480-0

    Article  CAS  Google Scholar 

  6. Swernath, S., Kaspereit, M., & Kienle, A. (2013). Dynamics and control of coupled continuous chromatography and crystallization processes for the production of pure enantiomers. Chemical Engineering and Technology, 36(8), 1417–1429. https://doi.org/10.1002/ceat.201200279

    Article  CAS  Google Scholar 

  7. Görke, B., & Stülke, J. (2008). Carbon catabolite repression in bacteria: Many ways to make the most out of nutrients. Nature Reviews Microbiology, 6(8), 613–624. https://doi.org/10.1038/nrmicro1932

    Article  CAS  PubMed  Google Scholar 

  8. Yuan, D., Liu, B., Yuan, X., Feng, L., Xu, X., Zhu, J., … Wu, M. (2023). Multisite mutation of the Escherichia coli cAMP receptor protein: Enhancing xylitol biosynthesis by activating xylose catabolism and improving strain tolerance. Journal of Agricultural and Food Chemistry, acs.jafc.3c05445. https://doi.org/10.1021/acs.jafc.3c05445

  9. Denisov, V. P., & Halle, B. (1998). Thermal denaturation of ribonuclease A characterized by water 17 O and 2 H magnetic relaxation dispersion. Biochemistry, 37(26), 9595–9604. https://doi.org/10.1021/bi980442b

    Article  CAS  PubMed  Google Scholar 

  10. Khankal, R., Chin, J. W., & Cirino, P. C. (2008). Role of xylose transporters in xylitol production from engineered Escherichia coli. Journal of Biotechnology, 134(3–4), 246–252. https://doi.org/10.1016/j.jbiotec.2008.02.003

    Article  CAS  PubMed  Google Scholar 

  11. Griffith, J. K., Baker, M. E., Rouch, D. A., Page, M. G. P., Skurray, R. A., Paulsen, I. T., & Henderson, P. J. F. (1992). Membrane transport proteins: implications of sequence comparisons. Current Opinion in Cell Biology, 4(4), 684–695. https://doi.org/10.1016/0955-0674(92)90090-Y

    Article  CAS  PubMed  Google Scholar 

  12. Ahlem, C., Huisman, W., Neslund, G., & Dahms, A. S. (1982). Purification and properties of a periplasmic D-xylose-binding protein from Escherichia coli K-12. Journal of Biological Chemistry, 257(6), 2926–2931. https://doi.org/10.1016/S0021-9258(19)81053-0

    Article  CAS  PubMed  Google Scholar 

  13. Desai, T. A., & Rao, C. V. (2010). Regulation of arabinose and xylose metabolism in Escherichia coli. Applied and Environmental Microbiology, 76(5), 1524–1532. https://doi.org/10.1128/AEM.01970-09

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Koirala, S., Wang, X., & Rao, C. V. (2016). Reciprocal regulation of L-arabinose and D-xylose metabolism in Escherichia coli. Journal of Bacteriology, 198(3), 386–393. https://doi.org/10.1128/JB.00709-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yuan, X., Tu, S., Lin, J., Yang, L., Shen, H., & Wu, M. (2020). Combination of the CRP mutation and ptsG deletion in Escherichia coli to efficiently synthesize xylitol from corncob hydrolysates. Applied Microbiology and Biotechnology, 104(5), 2039–2050. https://doi.org/10.1007/s00253-019-10324-0

    Article  CAS  PubMed  Google Scholar 

  16. Su, B., Wu, M., Zhang, Z., Lin, J., & Yang, L. (2015). Efficient production of xylitol from hemicellulosic hydrolysate using engineered Escherichia coli. Metabolic Engineering, 31, 112–122. https://doi.org/10.1016/j.ymben.2015.07.003

    Article  CAS  PubMed  Google Scholar 

  17. Lu, C., Bentley, W. E., & Rao, G. (2004). A high-throughput approach to promoter study using green fluorescent protein. Biotechnology Progress, 20(6), 1634–1640. https://doi.org/10.1021/bp049751l

    Article  CAS  PubMed  Google Scholar 

  18. Liang, T., Sun, J., Ju, S., Su, S., Yang, L., & Wu, J. (2021). Construction of T7-like expression system in pseudomonas putida KT2440 to enhance the heterologous expression level. Frontiers in Chemistry, 9, 664967. https://doi.org/10.3389/fchem.2021.664967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Deutscher, J. (2008). The mechanisms of carbon catabolite repression in bacteria. Current Opinion in Microbiology, 11(2), 87–93. https://doi.org/10.1016/j.mib.2008.02.007

    Article  CAS  PubMed  Google Scholar 

  20. Gosset, G. (2005). Improvement of Escherichia coli production strains by modification of the phosphoenolpyruvate:Sugar phosphotransferase system. Microbial Cell Factories, 4(1), 14–24. https://doi.org/10.1186/1475-2859-4-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hernández-Montalvo, V., Martínez, A., Hernández-Chavez, G., Bolivar, F., Valle, F., & Gosset, G. (2003). Expression of galP and glk in a Escherichia coli PTS mutant restores glucose transport and increases glycolytic flux to fermentation products. Biotechnology and Bioengineering, 83(6), 687–694. https://doi.org/10.1002/bit.10702

    Article  CAS  PubMed  Google Scholar 

  22. Chiang, C. J., Lee, H. M., Guo, H. J., Wang, Z. W., Lin, L. J., & Chao, Y. P. (2013). Systematic approach to engineer escherichia coli pathways for co-utilization of a glucose-xylose mixture. Journal of Agricultural and Food Chemistry, 61(31), 7583–7590. https://doi.org/10.1021/jf401230r

    Article  CAS  PubMed  Google Scholar 

  23. Guo, Q., Ullah, I., Zheng, L. J., Gao, X. Q., Liu, C. Y., Zheng, H. D., & Deng, L. (2022). Intelligent self-control of carbon metabolic flux in SecY-engineered Escherichia coli for xylitol biosynthesis from xylose-glucose mixtures. Biotechnology and Bioengineering, 119(2), 388–398. https://doi.org/10.1002/bit.28002

    Article  CAS  PubMed  Google Scholar 

  24. Groff, D., Benke, P. I., Batth, T. S., Bokinsky, G., Petzold, C. J., Adams, P. D., & Keasling, J. D. (2012). Supplementation of intracellular XylR leads to coutilization of hemicellulose sugars. Applied and Environmental Microbiology, 78(7), 2221–2229. https://doi.org/10.1128/AEM.06761-11

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sievert, C., Nieves, L. M., Panyon, L. A., Loeffler, T., Morris, C., Cartwright, R. A., & Demain, A. L. (2017). Experimental evolution reveals an effective avenue to release catabolite repression via mutations in XylR. Proceedings of the National Academy of Sciences of the United States of America, 114(28), 7349–7354. https://doi.org/10.1073/pnas.1700345114

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sha, F., Zheng, Y., Chen, J., Chen, K., Cao, F., Yan, M., & Ouyang, P. (2018). D-Tagatose manufacture through bio-oxidation of galactitol derived from waste xylose mother liquor. Green Chemistry, 20(10), 2382–2391. https://doi.org/10.1039/c8gc00091c

    Article  CAS  Google Scholar 

  27. Zhang, L., Chen, Z., Wang, J., Shen, W., Li, Q., & Chen, X. (2021). Stepwise metabolic engineering of Candida tropicalis for efficient xylitol production from xylose mother liquor. Microbial Cell Factories, 20(1), 105–116. https://doi.org/10.1186/s12934-021-01596-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang, H., Pan, J., Wang, J., Wang, N., Zhang, J., Li, Q., & Zhou, X. (2014). Review; agriculture and environmental biotechnology succinic acid production from xylose mother liquor by recombinant Escherichia coli strain. Biotechnology and Biotechnological Equipment, 28(6), 1042–1049. https://doi.org/10.1080/13102818.2014.952501

    Article  CAS  PubMed  Google Scholar 

  29. Li, Y., Zhang, H., Zhu, J., Yan, Q, Wang, Q., & Naikun, S. (n.d.). Optimization of succinic acid fermentation from xylose mother liquor by response surface methodology. https://doi.org/10.16085/j.issn.1000-6613.2017-0631

  30. Feng, J., Li, T., Zhang, X., Chen, J., Zhao, T., & Zou, X. (2019). Efficient production of polymalic acid from xylose mother liquor, an environmental waste from the xylitol industry, by a T-DNA-based mutant of Aureobasidium pullulans. Applied Microbiology and Biotechnology, 103, 6519–6527. https://doi.org/10.1007/s00253-019-09974-x

    Article  CAS  PubMed  Google Scholar 

  31. Sakakibara, Y., Saha, B. C., & Taylor, P. (2009). Microbial production of xylitol from l-arabinose by metabolically engineered Escherichia coli. Journal of Bioscience and Bioengineering, 107(5), 506–511. https://doi.org/10.1016/j.jbiosc.2008.12.017

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (no. 22278362) and the Public Welfare Project of Zhejiang Provincial Science and Technology Department (no. LGG21B06005).

Author information

Authors and Affiliations

Authors

Contributions

Investigation and validation: Bingbing Liu, Lin Jiang, and Gang Xu. Administrative support: Mianbin Wu, Lidan Ye, and Lirong Yang. Methodology and data analysis: Dongxu Yuan, Jianping Lin, and Yuhuan Chen. Manuscript writing: Dongxu Yuan and Bingbing Liu. Review and editing: Mianbin Wu, Lidan Ye, Yiqi Jiang, and Jizhang Lian. Final approval of manuscript: all authors.

Corresponding authors

Correspondence to Yiqi Jiang, Lidan Ye or Mianbin Wu.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

All authors consent to participate in the project.

Consent for Publication

All authors consent to publish the paper.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 19 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, D., Liu, B., Jiang, L. et al. XylR Overexpression in Escherichia coli Alleviated Transcriptional Repression by Arabinose and Enhanced Xylitol Bioproduction from Xylose Mother Liquor. Appl Biochem Biotechnol (2024). https://doi.org/10.1007/s12010-024-04890-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12010-024-04890-x

Keywords

Navigation