Skip to main content

Advertisement

Log in

Treatment of Intracerebral Hemorrhage with Traditional Chinese Medicine Monomer Wogonin by Modifying NLRP3 with METTL14 to Inhibit Neuronal Cell Pyroptosis

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the alleviating effect of wogonin on intracerebral hemorrhage (ICH) and its mechanism. The hemin-treated PC-12 cells were constructed to mimic ICH in vitro. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) analysis was used for cell viability measurement and flow cytometry was for pyroptosis detection. Enzyme-linked immunosorbent assay (ELISA) assay and western blot were used to detect the protein levels of pyroptosis-related proteins. The modification level of N6-methyladenosine (m6A) methylation was detected by quantitative real-time polymerase chain reaction (qRT-PCR) combined with m6A dot blot assays. Molecular docking experiments analyzed the binding of wogonin and METTL14 protein. The correlation between METTL14 and NLRP3 was confirmed by bioinformatics analysis and dual luciferase reporter gene detection. ICH was induced in mice injected with collagenase into the basal ganglia, and the neurobehavioral damage was evaluated. Triphenyltetrazolium chloride monohydrate (TTC) staining and neurological scores were used to assess brain damage in mice. The results demonstrated that wogonin alleviated neuronal cell pyroptosis, and was molecularly docked with METTL14. Overexpression of METTL14 partly reversed the protecting effects of wogonin on brain in vitro and in vivo. Furthermore, NLRP3 was methylated by METTL14. Taken together, wogonin inhibits neuronal pyroptosis and thus treats IHC by inhibiting METTL14 and its methylated NLRP3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kn, S. (2022). Spontaneous intracerebral hemorrhage. The New England Journal of Medicine, 387(17), 1589–1596. https://doi.org/10.1056/NEJMra2201449

    Article  Google Scholar 

  2. Greenberg, S. M., Ziai, W. C., Cordonnier, C., Dowlatshahi, D., Francis, B., Goldstein, J. N., Hemphill, R. J. C., Johnson, R., Keigher, K. M., Mack, W. J., Mocco, J., Newton, E. J., Ruff, I. M., Sansing, L. H., Schulman, S., Selim, M. H., Sheth, K. N., Sprigg, N., Sunnerhagen, K. S., et al. (2022). 2022 guideline for the management of patients with spontaneous intracerebral hemorrhage: A guideline from the American Heart Association/American Stroke Association. Stroke, 53(7), 101161S–101407S. https://doi.org/10.1161/STR.0000000000000407

    Article  Google Scholar 

  3. Zhou, J. F., Xiong, Y., Kang, X., Pan, Z., Zhu, Q., Goldbrunner, R., Stavrinou, L., Lin, S., Hu, W., Zheng, F., & Stavrinou, P. (2022). Application of stem cells and exosomes in the treatment of intracerebral hemorrhage: An update. Stem Cell Research & Therapy, 13(1), 281. https://doi.org/10.1186/s13287-022-02965-2

    Article  Google Scholar 

  4. Yu, Z., Zhang, L., Zhang, G., Xia, K., Yang, Q., Huang, T., & Fan, D. (2022). Lipids, apolipoproteins, statins, and intracerebral hemorrhage: A mendelian randomization study. Annals of Neurology, 92(3), 390–399. https://doi.org/10.1002/ana.26426

    Article  CAS  PubMed  Google Scholar 

  5. Duan, T., Li, L., Yu, Y., Li, T., Han, R., Sun, X., Cui, Y., Liu, T., Wang, X., Wang, Y., Fan, X., Liu, Y., & Zhang, H. (2022). Traditional Chinese medicine use in the pathophysiological processes of intracerebral hemorrhage and comparison with conventional therapy. Pharmacological Research, 179, 106200. https://doi.org/10.1016/j.phrs.2022.106200

    Article  CAS  PubMed  Google Scholar 

  6. Baradaran, R. V., Askari, V. R., & Hosseinzadeh, H. (2021). Promising influences of scutellaria baicalensis and its two active constituents, baicalin, and baicalein, against metabolic syndrome: A review. Phytotherapy Research, 35(7), 3558–3574. https://doi.org/10.1002/ptr.7046

    Article  CAS  Google Scholar 

  7. Banik, K., Khatoon, E., Harsha, C., Rana, V., Parama, D., Thakur, K. K., Bishayee, A., & Kunnumakkara, A. B. (2022). Wogonin and its analogs for the prevention and treatment of cancer: A systematic review. Phytotherapy Research, 36(5), 1854–1883. https://doi.org/10.1002/ptr.7386

    Article  CAS  PubMed  Google Scholar 

  8. Khan, N. M., Haseeb, A., Ansari, M. Y., Devarapalli, P., Haynie, S., & Haqqi, T. M. (2017). Wogonin, a plant derived small molecule, exerts potent anti-inflammatory and chondroprotective effects through the activation of ros/erk/nrf2 signaling pathways in human osteoarthritis chondrocytes. Free Radical Biology & Medicine, 106, 288–301. https://doi.org/10.1016/j.freeradbiomed.2017.02.041

    Article  CAS  Google Scholar 

  9. Feng, Y., Ju, Y., Yan, Z., Ji, M., Yang, M., Wu, Q., Wang, L., & Sun, G. (2022). Protective role of wogonin following traumatic brain injury by reducing oxidative stress and apoptosis via the pi3k/nrf2/ho-1 pathway. International Journal of Molecular Medicine, 49(4). https://doi.org/10.3892/ijmm.2022.5109

  10. Wang, L., Li, C., Sreeharsha, N., Mishra, A., Shrotriya, V., & Sharma, A. (2020). Neuroprotective effect of wogonin on rat’s brain exposed to gamma irradiation. Journal of Photochemistry and Photobiology. B, Biology, 204, 111775. https://doi.org/10.1016/j.jphotobiol.2020.111775

    Article  CAS  PubMed  Google Scholar 

  11. Zhuang, J., Peng, Y., Gu, C., Chen, H., Lin, Z., Zhou, H., Wu, X., Li, J., Yu, X., Cao, Y., Zeng, H., Fu, X., Xu, C., Huang, P., Cao, S., Wang, C., Yan, F., & Chen, G. (2021). Wogonin accelerates hematoma clearance and improves neurological outcome via the ppar-gamma pathway after intracerebral hemorrhage. Translational Stroke Research, 12(4), 660–675. https://doi.org/10.1007/s12975-020-00842-9

    Article  CAS  PubMed  Google Scholar 

  12. Yu, P., Zhang, X., Liu, N., Tang, L., Peng, C., & Chen, X. (2021). Pyroptosis: Mechanisms and diseases. Signal Transduction and Targeted Therapy, 6(1), 128. https://doi.org/10.1038/s41392-021-00507-5

    Article  PubMed  PubMed Central  Google Scholar 

  13. Gu, L., Sun, M., Li, R., Zhang, X., Tao, Y., Yuan, Y., Luo, X., & Xie, Z. (2022). Didymin suppresses microglia pyroptosis and neuroinflammation through the asc/caspase-1/gsdmd pathway following experimental intracerebral hemorrhage. Frontiers in Immunology, 13, 810582. https://doi.org/10.3389/fimmu.2022.810582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Song, D., Yeh, C. T., Wang, J., & Guo, F. (2022). Perspectives on the mechanism of pyroptosis after intracerebral hemorrhage. Frontiers in Immunology, 13, 989503. https://doi.org/10.3389/fimmu.2022.989503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gu, L., Sun, M., Li, R., Tao, Y., Luo, X., Zhang, X., Yuan, Y., & Xie, Z. (2022). Microglial pyroptosis: Therapeutic target in secondary brain injury following intracerebral hemorrhage. Frontiers in Cellular Neuroscience, 16, 971469. https://doi.org/10.3389/fncel.2022.971469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ding, Z., Zhong, Z., Wang, J., Zhang, R., Shao, J., Li, Y., Wu, G., Tu, H., Yuan, W., Sun, H., & Wang, Q. (2022). Inhibition of dectin-1 alleviates neuroinflammatory injury by attenuating nlrp3 inflammasome-mediated pyroptosis after intracerebral hemorrhage in mice: Preliminary study results. Journal of Inflammation Research, 15, 5917–5933. https://doi.org/10.2147/JIR.S384020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tian, M., Mao, L., & Zhang, L. (2022). Crosstalk among n6-methyladenosine modification and rnas in central nervous system injuries. Frontiers in Cellular Neuroscience, 16, 1013450. https://doi.org/10.3389/fncel.2022.1013450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang, H., Shi, X., Huang, T., Zhao, X., Chen, W., Gu, N., & Zhang, R. (2020). Dynamic landscape and evolution of m6a methylation in human. Nucleic Acids Research, 48(11), 6251–6264. https://doi.org/10.1093/nar/gkaa347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang, C., & Liu, N. (2022). N6-methyladenosine (m6a) modification in gynecological malignancies. Journal of Cellular Physiology, 237(9), 3465–3479. https://doi.org/10.1002/jcp.30828

    Article  CAS  PubMed  Google Scholar 

  20. Duan, L., Zhang, Y., Yang, Y., Su, S., Zhou, L., Lo, P. C., Cai, J., Qiao, Y., Li, M., Huang, S., Wang, H., Mo, Y., & Wang, Q. (2021). Baicalin inhibits ferroptosis in intracerebral hemorrhage. Frontiers in Pharmacology, 12, 629379. https://doi.org/10.3389/fphar.2021.629379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen, C. C., Hung, T. H., Wang, Y. H., Lin, C. W., Wang, P. Y., Lee, C. Y., & Chen, S. F. (2012). Wogonin improves histological and functional outcomes, and reduces activation of tlr4/nf-κb signaling after experimental traumatic brain injury. PLoS One, 7(1), e30294. https://doi.org/10.1371/journal.pone.0030294

  22. Gan, H., Zhang, L., Chen, H., Xiao, H., Wang, L., Zhai, X., Jiang, N., Liang, P., Zheng, S., & Zhao, J. (2021). The pivotal role of the nlrc4 inflammasome in neuroinflammation after intracerebral hemorrhage in rats. Experimental & Molecular Medicine, 53(11), 1807–1818. https://doi.org/10.1038/s12276-021-00702-y

    Article  CAS  Google Scholar 

  23. Jin, P., Qi, D., Cui, Y., Lenahan, C., Zhang, J. H., Tao, X., Deng, S., & Tang, J. (2022). Aprepitant attenuates nlrc4-dependent neuronal pyroptosis via nk1r/pkcδ pathway in a mouse model of intracerebral hemorrhage. Journal of Neuroinflammation, 19(1), 1–198. https://doi.org/10.1186/s12974-022-02558-z

    Article  CAS  Google Scholar 

  24. Pi, Z., Liu, J., Xiao, H., & Hu, Z. (2021). L-3-n-butylphthalide promotes restoration after an experimental animal model of intracerebral hemorrhage. International Journal of Medical Sciences, 18(12), 2607–2614. https://doi.org/10.7150/ijms.60342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yan, J., Xu, W., Lenahan, C., Huang, L., Wen, J., Li, G., Hu, X., Zheng, W., Zhang, J. H., & Tang, J. (2021). Ccr5 activation promotes nlrp1-dependent neuronal pyroptosis via ccr5/pka/creb pathway after intracerebral hemorrhage. Stroke, 52(12), 4021–4032. https://doi.org/10.1161/STROKEAHA.120.033285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yang, C., Wang, T., Chen, J., He, J., Li, Y., Chen, C., Lu, G., & Chen, W. (2021). Traditional Chinese medicine formulas alleviate acute pancreatitis: Pharmacological activities and mechanisms. Pancreas, 50(10), 1348–1356. https://doi.org/10.1097/MPA.0000000000001931

    Article  CAS  PubMed  Google Scholar 

  27. Al-Kawaz, M., Cho, S. M., Gottesman, R. F., Suarez, J. I., & Rivera-Lara, L. (2022). Impact of cerebral autoregulation monitoring in cerebrovascular disease: A systematic review. Neurocritical Care, 36(3), 1053–1070. https://doi.org/10.1007/s12028-022-01484-5

    Article  PubMed  Google Scholar 

  28. Lin, W., Hou, J., Han, T., Zheng, L., Liang, H., & Zhou, X. (2022). Efficacy and safety of traditional Chinese medicine for intracranial hemorrhage by promoting blood circulation and removing blood stasis: A systematic review and meta-analysis of randomized controlled trials. Frontiers in Pharmacology, 13, 942657. https://doi.org/10.3389/fphar.2022.942657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shin, J. W., Kang, H. C., Shim, J., & Sohn, N. W. (2012). Scutellaria baicalensis attenuates blood-brain barrier disruption after intracerebral hemorrhage in rats. The American Journal of Chinese Medicine, 40(1), 85–96. https://doi.org/10.1142/S0192415X12500073

    Article  PubMed  Google Scholar 

  30. Zhou, Q., Jin, Y., Jia, Q., Zhang, Y., Li, L., Liu, P., & Liu, Y. (2014). Baicalin attenuates brain edema in a rat model of intracerebral hemorrhage. Inflammation, 37(1), 107–115. https://doi.org/10.1007/s10753-013-9717-9

    Article  CAS  PubMed  Google Scholar 

  31. Zhao, X., Qiao, D., Guan, D., Wang, K., & Cui, Y. (2022). Chrysophanol ameliorates hemin-induced oxidative stress and endoplasmic reticulum stress by regulating microrna-320-5p/wnt3a pathway in ht22 cells. Oxidative Medicine and Cellular Longevity, 2022, 9399658. https://doi.org/10.1155/2022/9399658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jin, Z. L., Gao, W. Y., Liao, S. J., Yu, T., Shi, Q., Yu, S. Z., & Cai, Y. F. (2021). Paeonol inhibits the progression of intracerebral haemorrhage by mediating the hotair/upf1/acsl4 axis. ASN Neuro, 13, 523085737. https://doi.org/10.1177/17590914211010647

    Article  CAS  Google Scholar 

  33. Zhang, Y., Lu, P., Qin, H., Zhang, Y., Sun, X., Song, X., Liu, J., Peng, H., Liu, Y., Nwafor, E. O., Li, J., & Liu, Z. (2021). Traditional Chinese medicine combined with pulmonary drug delivery system and idiopathic pulmonary fibrosis: Rationale and therapeutic potential. Biomedicine & Pharmacotherapy, 133, 111072. https://doi.org/10.1016/j.biopha.2020.111072

    Article  CAS  Google Scholar 

  34. Jiang, H., Yao, Q., An, Y., Fan, L., Wang, J., & Li, H. (2022). Baicalin suppresses the progression of Type 2 diabetes-induced liver tumor through regulating METTL3/m6A/HKDC1 axis and downstream p-JAK2/STAT1/clevaged Capase3 pathway. Phytomedicine, 94, 153823. https://doi.org/10.1016/j.phymed.2021.153823

  35. Zhang, L., Wang, X., Che, W., Yi, Y., Zhou, S., & Feng, Y. (2022). Methyltransferase-like 3 silenced inhibited the ferroptosis development via regulating the glutathione peroxidase 4 levels in the intracerebral hemorrhage progression. Bioengineered, 13(6), 14215–14226. https://doi.org/10.1080/21655979.2022.2084494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Coll, R. C., Schroder, K., & Pelegrín, P. (2022). Nlrp3 and pyroptosis blockers for treating inflammatory diseases. Trends in Pharmacological Sciences, 43(8), 653–668. https://doi.org/10.1016/j.tips.2022.04.003

    Article  CAS  PubMed  Google Scholar 

  37. Xiao, L., Dai, Z., Tang, W., Liu, C., Tang, B., Ajinkya, S., & Sase, A. (2021). Astragaloside iv alleviates cerebral ischemia-reperfusion injury through nlrp3 inflammasome-mediated pyroptosis inhibition via activating nrf2. Oxidative Medicine and Cellular Longevity, 2021, 9925514–9925561. https://doi.org/10.1155/2021/9925561

    Article  CAS  Google Scholar 

  38. Wang, S., Yuan, Y., Chen, N., & Wang, H. (2019). The mechanisms of nlrp3 inflammasome/pyroptosis activation and their role in Parkinson’s disease. International Immunopharmacology, 67, 458–464. https://doi.org/10.1016/j.intimp.2018.12.019

    Article  CAS  PubMed  Google Scholar 

  39. Liu, B. H., Tu, Y., Ni, G. X., Yan, J., Yue, L., Li, Z. L., et al. (2021). Abelmoschus manihottotal flavones of ameliorates podocyte pyroptosis and injury in high glucose conditions by targeting mettl3-dependent ma modification-mediated nlrp3-inflammasome activation and pten/pi3k/akt signaling. Frontiers in Pharmacology, 12, 667644. https://doi.org/10.3389/fphar.2021.667644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Meng, L., Lin, H., Huang, X., Weng, J., Peng, F., & Wu, S. (2022). Mettl14 suppresses pyroptosis and diabetic cardiomyopathy by downregulating tincr lncrna. Cell Death & Disease, 13(1), 38. https://doi.org/10.1038/s41419-021-04484-z

    Article  CAS  Google Scholar 

Download references

Data availability statement

The datasets analyzed during the current study are available from the corresponding author on reasonable request.

Author information

Authors and Affiliations

Authors

Contributions

LL, JG, and WZ conceived the study; JG conducted the experiments; WZ analyzed the data; LL wrote the manuscript; all the authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Wenjia Zhang.

Ethics declarations

Ethical Approval

No ethics approval was required for this study as it involved no human participants or animals.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Gong, J. & Zhang, W. Treatment of Intracerebral Hemorrhage with Traditional Chinese Medicine Monomer Wogonin by Modifying NLRP3 with METTL14 to Inhibit Neuronal Cell Pyroptosis. Appl Biochem Biotechnol (2024). https://doi.org/10.1007/s12010-023-04849-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12010-023-04849-4

Keywords

Navigation