Skip to main content

Advertisement

Log in

Melitoxin Inhibits Proliferation, Metastasis, and Invasion of Glioma U251 Cells by Down-regulating F2RL1

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

As the principal active component of bee venom, melittin has an anti-cancer effect in different cancers. This study was aimed to investigate the effect of melittin in glioma and explore whether F2RL1 is closely involved in glioblastoma cells proliferation. TCGA and GES databases were used to evaluate the role of F2RL1 in gliomas. The U251 cells were divided into a control lentivirus + PBS group (NC-PBS), F2RL1 intervention lentivirus + PBS group (KD-PBS), control lentivirus + melittin group (NC-melittin), and F2RL1 intervention lentivirus + melittin group (KD-melittin). Cell proliferation was detected by MTT and EDU staining assays. The apoptosis rate was assessed by flow cytometry. Expressions of genes related to apoptosis, cycle arrest, migration, and invasion were detected by qRT-PCR. Cellular LDH concentrations were detected by ELISA. The subcutaneous tumor volume of nude mice was analyzed by xenograft method. F2RL1 was significantly overexpressed in glioma tissues and were reduced in the melittin-treated group compared to the blank group. F2RL1 knockdown and melittin alone or in combination increased the proportion of cells in the G1-phase, and the combination was more pronounced. The KD-melittin group showed a decrease in the number of viable cells at 24, 48, 72, and 96 h compared to the NC-PBS group. The number of cell migration and invasion was decreased in the KD-melittin group compared to the other groups. Moreover, the genes related to cell cycle arrest and apoptosis were significantly changed in the KD-melittin group. At weeks 4, 5, and 6, the tumor volume in the KD-melittin group was smaller than that in the KD-PBS group and NC-melittin group. Interference with the target gene F2RL1 inhibited the proliferation of glioma U251 cells, and melittin treatment inhibited the proliferation of glioma U251 cells. Melittin inhibited the proliferation of glioma U251 cells by suppressing the expression of target gene F2RL1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Liu, C. C., Yang, H., Zhang, L. L., Zhang, Q., Chen, B., & Wang, Y. (2014). Biotoxins for cancer therapy. Asian Pacific Journal of Cancer Prevention : APJCP, 15(12), 4753–4758. https://doi.org/10.7314/apjcp.2014.15.12.4753

    Article  PubMed  Google Scholar 

  2. Dias, D. A., Urban, S., & Roessner, U. (2012). A historical overview of natural products in drug discovery. Metabolites, 2(2), 303–336. https://doi.org/10.3390/metabo2020303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cragg, G. M., & Newman, D. J. (2013). Natural products: A continuing source of novel drug leads. Biochimica et biophysica acta, 1830(6), 3670–3695. https://doi.org/10.1016/j.bbagen.2013.02.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Luckanagul, J. A., Pitakchatwong, C., Bhuket, P. R., Muangnoi, C., Rojsitthisak, P., Chirachanchai, S., Wang, Q., & Rojsitthisak, P. (2018). Chitosan-based polymer hybrids for thermo-responsive nanogel delivery of curcumin. Carbohydrate Polymers, 181, 1119–1127. https://doi.org/10.1016/j.carbpol.2017.11.027

    Article  CAS  PubMed  Google Scholar 

  5. Ullah, K., Sohail, M., Murtaza, G., & Khan, S. A. (2019). Natural and synthetic materials based CMCh/PVA hydrogels for oxaliplatin delivery: Fabrication, characterization, in-vitro and in-vivo safety profiling. International Journal of Biological Macromolecules, 122, 538–548. https://doi.org/10.1016/j.ijbiomac.2018.10.203

    Article  CAS  PubMed  Google Scholar 

  6. Haefner, B. (2003). Drugs from the deep: Marine natural products as drug candidates. Drug Discovery Today, 8(12), 536–544. https://doi.org/10.1016/s1359-6446(03)02713-2

    Article  CAS  PubMed  Google Scholar 

  7. Rajesh, E., Sankari, L. S., Malathi, L., & Krupaa, J. R. (2015). Naturally occurring products in cancer therapy. Journal of Pharmacy & Bioallied Sciences, 7(Suppl 1), S181–S183. https://doi.org/10.4103/0975-7406.155895

    Article  CAS  Google Scholar 

  8. Newman, D. J., & Cragg, G. M. (2012). Natural products as sources of new drugs over the 30 years from 1981 to 2010. Journal of Natural Products, 75(3), 311–335. https://doi.org/10.1021/np200906s

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hashem, S., Ali, T. A., Akhtar, S., Nisar, S., Sageena, G., Ali, S., Al-Mannai, S., Therachiyil, L., Mir, R., Elfaki, I., Mir, M. M., Jamal, F., Masoodi, T., Uddin, S., Singh, M., Haris, M., Macha, M., & Bhat, A. A. (2022). Targeting cancer signaling pathways by natural products: Exploring promising anti-cancer agents. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 150, 113054. https://doi.org/10.1016/j.biopha.2022.113054

    Article  CAS  Google Scholar 

  10. Atanasov, A. G., Zotchev, S. B., Dirsch, V. M., International Natural Product Sciences Taskforce, & Supuran, C. T. (2021). Natural products in drug discovery: Advances and opportunities. Nature reviews. Drug discovery, 20(3), 200–216. https://doi.org/10.1038/s41573-020-00114-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Huang, D., Chen, J., Ding, L., Guo, L., Kannan, P., Luo, F., Qiu, B., & Lin, Z. (2020). Core-satellite assemblies and exonuclease assisted double amplification strategy for ultrasensitive SERS detection of biotoxin. Analytica Chimica Acta, 1110, 56–63. https://doi.org/10.1016/j.aca.2020.02.058

    Article  CAS  PubMed  Google Scholar 

  12. Xu, S., Guo, L., Chen, L., Luo, F., Qiu, B., & Lin, Z. (2020). Dark field microscope-based single nanoparticle identification coupled with statistical analysis for ultrasensitive biotoxin detection in complex sample matrix. Mikrochimica Acta, 187(7), 413. https://doi.org/10.1007/s00604-020-04386-5

    Article  CAS  PubMed  Google Scholar 

  13. Loser, D., Schaefer, J., Danker, T., Möller, C., Brüll, M., Suciu, I., Ückert, A. K., Klima, S., Leist, M., & Kraushaar, U. (2021). Human neuronal signaling and communication assays to assess functional neurotoxicity. Archives of Toxicology, 95(1), 229–252. https://doi.org/10.1007/s00204-020-02956-3

    Article  CAS  PubMed  Google Scholar 

  14. Leal, J. F., & Cristiano, M. L. S. (2022). Marine paralytic shellfish toxins: Chemical properties, mode of action, newer analogues, and structure-toxicity relationship. Natural Product Reports, 39(1), 33–57. https://doi.org/10.1039/d1np00009h

    Article  CAS  PubMed  Google Scholar 

  15. Kraus, J.-L. (2021). Natural products as potential antiviral drugs: The specific case of marine biotoxins. Russian Journal of Bioorganic Chemistry, 47(6), 1127–1132. https://doi.org/10.1134/S1068162021060133

    Article  Google Scholar 

  16. Uhlig, S., Ivanova, L., & Miles, C. O. (2020). Oxidative release of thiol-conjugated forms of the mycotoxin 4-deoxynivalenol. Chemical Research in Toxicology, 33(2), 515–521. https://doi.org/10.1021/acs.chemrestox.9b00385

    Article  CAS  PubMed  Google Scholar 

  17. Zhang, Z., Ma, P., Ahmed, R., Wang, J., Akin, D., Soto, F., Liu, B. F., Li, P., & Demirci, U. (2022). Advanced point-of-care testing technologies for human acute respiratory virus detection. Advanced Materials (Deerfield Beach, Fla.), 34(1), e2103646. https://doi.org/10.1002/adma.202103646

    Article  CAS  PubMed  Google Scholar 

  18. Su, Z., Li, T., Wu, D., Wu, Y., & Li, G. (2022). Recent progress on single-molecule detection technologies for food safety. Journal of Agricultural and Food Chemistry, 70(2), 458–469. https://doi.org/10.1021/acs.jafc.1c06808

    Article  CAS  PubMed  Google Scholar 

  19. Zhao, L., Huang, Y., Dong, Y., Han, X., Wang, S., & Liang, X. (2018). Aptamers and aptasensors for highly specific recognition and sensitive detection of marine biotoxins: Recent advances and perspectives. Toxins, 10(11), 427. https://doi.org/10.3390/toxins10110427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lischer, K., Sitorus, S. R. A., Guslianto, B. W., Avila, F., Khayrani, A. C., & Sahlan, M. (2021). Anti-breast cancer activity on MCF-7 cells of melittin from Indonesia’s Apis cerana: An in vitro study. Asian Pacific Journal of Cancer Prevention : APJCP, 22(12), 3913–3919. https://doi.org/10.31557/APJCP.2021.22.12.3913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lv, C., Zhang, Z., Zhao, T., Han, M. F., Jia, D. P., Su, L. Z., Huang, F., Wang, F. Z., Fang, F. F., & Li, B. (2019). The anti-tumour effect of Mel and its role in autophagy in human hepatocellular carcinoma cells. American Journal of Translational Research, 11(2), 931–941.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Moghaddam, F. D., Mortazavi, P., Hamedi, S., Nabiuni, M., & Roodbari, N. H. (2020). Apoptotic effects of melittin on 4T1 breast cancer cell line is associated with up regulation of Mfn1 and Drp1 mRNA expression. Anti-cancer agents in medicinal chemistry, 20(7), 790–799. https://doi.org/10.2174/1871520620666200211091451

    Article  CAS  PubMed  Google Scholar 

  23. Pincus, M. R. (2012). Physiological structure and function of proteins. Cell Physiol Source B Essentials Membr Biophys, 1, 19–47 https://www.sciencedirect.com/science/article/abs/pii/B9780126569766500949?via%3Dihub

    Article  Google Scholar 

  24. Duffy, C., Sorolla, A., Wang, E., Golden, E., Woodward, E., Davern, K., Ho, D., Johnstone, E., Pfleger, K., Redfern, A., Iyer, K. S., Baer, B., & Blancafort, P. (2020). Honeybee venom and melittin suppress growth factor receptor activation in HER2-enriched and triple-negative breast cancer. NPJ Precision Oncology, 4, 24. https://doi.org/10.1038/s41698-020-00129-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cornara, L., Biagi, M., Xiao, J., & Burlando, B. (2017). Therapeutic properties of bioactive compounds from different honeybee products. Frontiers in Pharmacology, 8, 412. https://doi.org/10.3389/fphar.2017.00412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Meyer, M., Dohmen, C., Philipp, A., Kiener, D., Maiwald, G., Scheu, C., Ogris, M., & Wagner, E. (2009). Synthesis and biological evaluation of a bioresponsive and endosomolytic siRNA-polymer conjugate. Molecular Pharmaceutics, 6(3), 752–762. https://doi.org/10.1021/mp9000124

    Article  CAS  PubMed  Google Scholar 

  27. He, S. D., Tan, N., Sun, C. X., Liao, K. H., Zhu, H. J., Luo, X. G., Zhang, J. Y., Li, D. Y., & Huang, S. G. (2020). Treatment with melittin induces apoptosis and autophagy of fibroblast-like synoviocytes in patients with rheumatoid arthritis. Current Pharmaceutical Biotechnology, 21(8), 734–740. https://doi.org/10.2174/1389201021666191210110826

    Article  CAS  PubMed  Google Scholar 

  28. Coffin, R. (2016). Interview with Robert Coffin, inventor of T-VEC: The first oncolytic immunotherapy approved for the treatment of cancer. Immunotherapy, 8(2), 103–106. https://doi.org/10.2217/imt.15.116

    Article  CAS  PubMed  Google Scholar 

  29. Bondy, M. L., Scheurer, M. E., Malmer, B., Barnholtz-Sloan, J. S., Davis, F. G., Il'yasova, D., Kruchko, C., McCarthy, B. J., Rajaraman, P., Schwartzbaum, J. A., Sadetzki, S., Schlehofer, B., Tihan, T., Wiemels, J. L., Wrensch, M., Buffler, P. A., & Brain Tumor Epidemiology Consortium. (2008). Brain tumor epidemiology: Consensus from the Brain Tumor Epidemiology Consortium. Cancer, 113(7 Suppl), 1953–1968. https://doi.org/10.1002/cncr.23741

    Article  PubMed  Google Scholar 

  30. Sharma, A., & Graber, J. J. (2021). Overview of prognostic factors in adult gliomas. Annals of Palliative Medicine, 10(1), 863–874. https://doi.org/10.21037/apm-20-640

    Article  CAS  PubMed  Google Scholar 

  31. Oraiopoulou, M. E., Tampakaki, M., Tzamali, E., Tamiolakis, T., Makatounakis, V., Vakis, A. F., Zacharakis, G., Sakkalis, V., & Papamatheakis, J. (2019). A 3D tumor spheroid model for the T98G glioblastoma cell line phenotypic characterization. Tissue & Cell, 59, 39–43. https://doi.org/10.1016/j.tice.2019.05.007

    Article  CAS  Google Scholar 

  32. Li, Z. Z., Wang, Y. L., Yu, Y. H., Xing, Y. L., & Ji, X. F. (2019). Aclidinium bromide inhibits proliferation of osteosarcoma cells through regulation of PI3K/Akt pathway. European Review for Medical and Pharmacological Sciences, 23(1), 105–112. https://doi.org/10.26355/eurrev_201901_16754

    Article  PubMed  Google Scholar 

  33. Kawaguchi, M., Kanemaru, A., Sawaguchi, A., Yamamoto, K., Baba, T., Lin, C. Y., Johnson, M. D., Fukushima, T., & Kataoka, H. (2015). Hepatocyte growth factor activator inhibitor type 1 maintains the assembly of keratin into desmosomes in keratinocytes by regulating protease-activated receptor 2-dependent p38 signaling. The American journal of Pathology, 185(6), 1610–1623. https://doi.org/10.1016/j.ajpath.2015.02.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ke, Z., Wang, C., Wu, T., Wang, W., Yang, Y., & Dai, Y. (2020). PAR2 deficiency enhances myeloid cell-mediated immunosuppression and promotes colitis-associated tumorigenesis. Cancer Letters, 469, 437–446. https://doi.org/10.1016/j.canlet.2019.11.015

    Article  CAS  PubMed  Google Scholar 

  35. Nieman, M. T. (2016). Protease-activated receptors in hemostasis. Blood, 128(2), 169–177. https://doi.org/10.1182/blood-2015-11-636472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Falconer, A. M. D., Chan, C. M., Gray, J., Nagashima, I., Holland, R. A., Shimizu, H., Pickford, A. R., Rowan, A. D., & Wilkinson, D. J. (2019). Collagenolytic matrix metalloproteinases antagonize proteinase-activated receptor-2 activation, providing insights into extracellular matrix turnover. The Journal of Biological Chemistry, 294(26), 10266–10277. https://doi.org/10.1074/jbc.RA119.006974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Abdel Raheem, H. M., Shehata, H. A., Rashed, L. A., & Saleh, M. A. (2019). Decreased level of PAR2 in psoriasis and MF patients receiving phototherapy. Photodermatology, Photoimmunology & Photomedicine, 35(4), 282–283. https://doi.org/10.1111/phpp.12464

    Article  Google Scholar 

  38. Khalil, A., Elesawy, B. H., Ali, T. M., & Ahmed, O. M. (2021). Bee venom: From venom to drug. Molecules (Basel, Switzerland), 26(16), 4941. https://doi.org/10.3390/molecules26164941

    Article  CAS  PubMed  Google Scholar 

  39. Kim, D. H., Lee, H. W., Park, H. W., Lee, H. W., & Chun, K. H. (2020). Bee venom inhibits the proliferation and migration of cervical-cancer cells in an HPV E6/E7-dependent manner. BMB Reports, 53(8), 419–424. https://doi.org/10.5483/BMBRep.2020.53.8.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang, S., Liu, Y., Ye, Y., Wang, X. R., Lin, L. T., Xiao, L. Y., Zhou, P., Shi, G. X., & Liu, C. Z. (2018). Bee venom therapy: Potential mechanisms and therapeutic applications. Toxicon : official Journal of the International Society on Toxinology, 148, 64–73. https://doi.org/10.1016/j.toxicon.2018.04.012

    Article  CAS  PubMed  Google Scholar 

  41. Jeong, Y. J., Park, Y. Y., Park, K. K., Choi, Y. H., Kim, C. H., & Chang, Y. C. (2019). Bee venom suppresses EGF-induced epithelial-mesenchymal transition and tumor invasion in lung cancer cells. The American journal of Chinese Medicine, 47(8), 1869–1883. https://doi.org/10.1142/S0192415X19500952

    Article  CAS  PubMed  Google Scholar 

  42. Liu, H., Hu, Y., Sun, Y., Wan, C., Zhang, Z., Dai, X., Lin, Z., He, Q., Yang, Z., Huang, P., Xiong, Y., Cao, J., Chen, X., Chen, Q., Lovell, J. F., Xu, Z., Jin, H., & Yang, K. (2019). Co-delivery of bee venom melittin and a photosensitizer with an organic-inorganic hybrid nanocarrier for photodynamic therapy and immunotherapy. ACS Nano, 13(11), 12638–12652. https://doi.org/10.1021/acsnano.9b04181

    Article  CAS  PubMed  Google Scholar 

  43. Lim, H. N., Baek, S. B., & Jung, H. J. (2019). Bee venom and its peptide component melittin suppress growth and migration of melanoma cells via inhibition of PI3K/AKT/mTOR and MAPK pathways. Molecules (Basel, Switzerland), 24(5), 929. https://doi.org/10.3390/molecules24050929

    Article  CAS  PubMed  Google Scholar 

  44. Shanshan, H., Lan, X., Xia, L., Huang, W., Meifang, Z., & Ling, Y. (2019). Inhibition of protease-activated receptor-2 induces apoptosis in cervical cancer by inhibiting signal transducer and activator of transcription-3 signaling. The Journal of International Medical Research, 47(3), 1330–1338. https://doi.org/10.1177/0300060518820440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tu, N. H., Jensen, D. D., Anderson, B. M., Chen, E., Jimenez-Vargas, N. N., Scheff, N. N., Inoue, K., Tran, H. D., Dolan, J. C., Meek, T. A., Hollenberg, M. D., Liu, C. Z., Vanner, S. J., Janal, M. N., Bunnett, N. W., Edgington-Mitchell, L. E., & Schmidt, B. L. (2021). Legumain induces oral cancer pain by biased agonism of protease-activated receptor-2. The Journal of neuroscience : the Official Journal of the Society for Neuroscience, 41(1), 193–210. https://doi.org/10.1523/JNEUROSCI.1211-20.2020

    Article  CAS  PubMed  Google Scholar 

  46. Jiang, Y., Lim, J., Wu, K. C., Xu, W., Suen, J. Y., & Fairlie, D. P. (2021). PAR2 induces ovarian cancer cell motility by merging three signalling pathways to transactivate EGFR. British Journal of Pharmacology, 178(4), 913–932. https://doi.org/10.1111/bph.15332

    Article  CAS  PubMed  Google Scholar 

  47. Kim, J. M., Park, J., Noh, E. M., Song, H. K., Kang, S. Y., Jung, S. H., Kim, J. S., Youn, H. J., & Lee, Y. R. (2021). Downregulation of matriptase suppresses the PAR-2/PLCγ2/PKC-mediated invasion and migration abilities of MCF-7 breast cancer cells. Oncology Reports, 46(6), 247. https://doi.org/10.3892/or.2021.8198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ke, Q., & Costa, M. (2006). Hypoxia-inducible factor-1 (HIF-1). Molecular Pharmacology, 70(5), 1469–1480. https://doi.org/10.1124/mol.106.027029

    Article  CAS  PubMed  Google Scholar 

  49. Kim, W., Chu, T. H., Nienhüser, H., Jiang, Z., Del Portillo, A., Remotti, H. E., White, R. A., Hayakawa, Y., Tomita, H., Fox, J. G., Drake, C. G., & Wang, T. C. (2021). PD-1 Signaling promotes tumor-infiltrating myeloid-derived suppressor cells and gastric tumorigenesis in mice. Gastroenterology, 160(3), 781–796. https://doi.org/10.1053/j.gastro.2020.10.036

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the Taishan Scholar Project of Shandong Province of China, with the approval number (no. tsqn202103200).

Supported by Shandong Traditional Chinese Medicine Science and Technology Project with the approval number of 2021M033.

Supported by Shandong Traditional Chinese Medicine Science and Technology Project, with approval number of M-2022123.

Supported by Youth Scientific Research Fund of Liaocheng People’s Hospital, with the approval number of 201910915.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally.

Corresponding authors

Correspondence to Mengyou Li or Yilei Xiao.

Ethics declarations

Consent to Participate

All authors have their consent to participate.

Consent for Publication

All authors have their consent to publish their work.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, P., Zhou, J., Xing, X. et al. Melitoxin Inhibits Proliferation, Metastasis, and Invasion of Glioma U251 Cells by Down-regulating F2RL1. Appl Biochem Biotechnol (2024). https://doi.org/10.1007/s12010-023-04841-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12010-023-04841-y

Keywords

Navigation