Skip to main content
Log in

Recent Progress on Peroxidase Modification and Application

  • Review Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Peroxdiase is one of the member of oxireductase super family, which has a broad substrate range and a variety of reaction types, including hydroxylation, epoxidation or halogenation of unactivated C-H bonds, and aromatic group or biophenol compounds. Here, we summarized the recently discovered enzymes with peroxidation activity, and focused on the special structures, sites, and corresponding strategies that can change the peroxidase catalytic activity, stability, and substrate range. The comparison of the structural differences between these natural enzymes and the mimic enzymes of binding nanomaterials and polymer materials is helpful to expand the application of peroxidase in industry. In addition, we also reviewed the catalytic application of peroxidase in the synthesis of important organic molecules and the degradation of pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Shen, C., Shan, T., Zhao, W., Ou, C., Li, L., Liu, X., Liu, J., & Yu, B. (2019). Regio- and enantioselective O-demethylation of tetrahydroprotoberberines by cytochrome P450 enzyme system from Streptomyces griseus ATCC 13273. Applied Microbiology and Biotechnology, 103, 761–776.

    Article  CAS  PubMed  Google Scholar 

  2. Mukherjee, M., & Dey, A. (2020). Catalytic C–H bond oxidation using dioxygen by analogues of heme superoxide. Inorganic Chemistry, 59, 7415–7425.

    Article  CAS  PubMed  Google Scholar 

  3. Di Nardo, G., & Gilardi, G. (2020). Natural compounds as pharmaceuticals: The key role of cytochromes P450 reactivity. Trends in Biochemical Sciences, 45, 511–525.

    Article  PubMed  Google Scholar 

  4. Hobisch, M., Holtmann, D., Gomez de Santos, P., Alcalde, M., Hollmann, F., & Kara, S. (2021). Recent developments in the use of peroxygenases – Exploring their high potential in selective oxyfunctionalisations. Biotechnology Advances, 51, 107615.

  5. Sigmund, M.-C., & Poelarends, G. J. (2020). Current state and future perspectives of engineered and artificial peroxygenases for the oxyfunctionalization of organic molecules. Nature Catalysis, 3, 690–702.

    Article  CAS  Google Scholar 

  6. Kwon, H., Basran, J., Devos, J. M., Suardíaz, R., van der Kamp, M. W., Mulholland, A. J., Schrader, T. E., Ostermann, A., Blakeley, M. P., & Moody, P. C. (2020). Visualizing the protons in a metalloenzyme electron proton transfer pathway. Proceedings of the National Academy of Sciences, 117, 6484–6490.

    Article  CAS  Google Scholar 

  7. Stasyuk, N., Smutok, O., Demkiv, O., Prokopiv, T., Gayda, G., Nisnevitch, M., & Gonchar, M. (2020). Synthesis, catalytic properties and application in biosensorics of nanozymes and electronanocatalysts: A review. Sensors, 20, 4509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Feng, L., Zhang, L., Zhang, S., Chen, X., Li, P., Gao, Y., Xie, S., Zhang, A., & Wang, H. (2020). Plasma-assisted controllable doping of nitrogen into MoS2 nanosheets as efficient nanozymes with enhanced peroxidase-like catalysis activity. ACS Applied Materials & Interfaces, 12, 17547–17556.

    Article  CAS  Google Scholar 

  9. Baldim, V., Yadav, N., Bia, N., Graillot, A., Loubat, C., Singh, S., Karakoti, A. S., & Berret, J.-F. (2020). Polymer-coated cerium oxide nanoparticles as oxidoreductase-like catalysts. ACS Applied Materials & Interfaces, 12, 42056–42066.

    Article  CAS  Google Scholar 

  10. Guo, Y., Xu, L., & Liu, A. (2020). Boosting the peroxidase-like activity of cobalt ions by amino acid-based biological species and its applications. Chemistry–An Asian Journal, 15, 1067–1073.

    Article  CAS  PubMed  Google Scholar 

  11. Pramanik, K., Sengupta, P., Majumder, B., Datta, P., & Sarkar, P. (2020). Artificial bifunctional photozyme of glucose oxidase–peroxidase for solar-powered glucose–peroxide detection in a biofluid with resorcinol–formaldehyde polymers. ACS Applied Materials & Interfaces, 12, 36948–36956.

    Article  CAS  Google Scholar 

  12. Liu, Z., Xie, L., Qiu, K., Liao, X., Rees, T. W., Zhao, Z., Ji, L., & Chao, H. (2020). An ultrasmall RuO2 nanozyme exhibiting multienzyme-like activity for the prevention of acute kidney injury. ACS Applied Materials & Interfaces, 12, 31205–31216.

    Article  CAS  Google Scholar 

  13. Jo, S.-M., Zhang, K. A. I., Wurm, F. R., & Landfester, K. (2020). Mimic of the cellular antioxidant defense system for a sustainable regeneration of nicotinamide adenine dinucleotide (NAD). ACS Applied Materials & Interfaces, 12, 25625–25632.

    Article  CAS  Google Scholar 

  14. Mohamad, A., Rizwan, M., Keasberry, N. A., Nguyen, A. S., Lam, T. D., & Ahmed, M. U. (2020). Gold-microrods/Pd-nanoparticles/polyaniline-nanocomposite-interface as a peroxidase-mimic for sensitive detection of tropomyosin. Biosensors & Bioelectronics, 155, 112108.

    Article  CAS  Google Scholar 

  15. Xie, Y., Xu, M., Wang, L., Liang, H., Wang, L., & Song, Y. (2020). Iron-porphyrin-based covalent-organic frameworks for electrochemical sensing H2O2 and pH. Materials Science and Engineering, C, 112, 110864.

    Article  CAS  PubMed  Google Scholar 

  16. Ye, R., Xu, H., Gu, J., & Chen, H. (2021). Bioinspired synthesis of protein-posnjakite organic-inorganic nanobiohybrid for biosensing applications. Analytica Chimica Acta, 1143, 31–36.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang, X., King-Smith, E., & Renata, H. (2018). Total synthesis of Tambromycin by combining chemocatalytic and biocatalytic C− H functionalization. Angewandte Chemie, International Edition, 57, 5037–5041.

    Article  CAS  PubMed  Google Scholar 

  18. Kim, S. J., Joo, J. C., Song, B. K., Yoo, Y. J., & Kim, Y. H. (2016). Improving the synthesis of phenolic polymer using Coprinus cinereus peroxidase mutant Phe230Ala. Enzyme and Microbial Technology, 87-88, 37–43.

    Article  CAS  PubMed  Google Scholar 

  19. Rekik, H., Zaraî Jaouadi, N., Bouacem, K., Zenati, B., Kourdali, S., Badis, A., Annane, R., Bouanane-Darenfed, A., Bejar, S., & Jaouadi, B. (2019). Physical and enzymatic properties of a new manganese peroxidase from the white-rot fungus Trametes pubescens strain i8 for lignin biodegradation and textile-dyes biodecolorization. International Journal of Biological Macromolecules, 125, 514–525.

    Article  CAS  PubMed  Google Scholar 

  20. Granja-Travez, R. S., Wilkinson, R. C., Persinoti, G. F., Squina, F. M., Fülöp, V., & Bugg, T. D. H. (2018). Structural and functional characterisation of multi-copper oxidase CueO from lignin-degrading bacterium Ochrobactrum sp. reveal its activity towards lignin model compounds and lignosulfonate. FEBS Journal, 285, 1684–1700.

    Article  CAS  PubMed  Google Scholar 

  21. Linde, D., Olmedo, A., González-Benjumea, A., Estévez, M., Renau-Mínguez, C., Carro, J., Fernández-Fueyo, E., Gutiérrez, A., Martínez, A. T., & Master, E. R. (2020). Two new unspecific peroxygenases from heterologous expression of fungal genes in Escherichia coli. Applied and Environmental Microbiology, 86, e02899-19.

  22. Girvan, H. M., Poddar, H., McLean, K. J., Nelson, D. R., Hollywood, K. A., Levy, C. W., Leys, D., & Munro, A. W. (2018). Structural and catalytic properties of the peroxygenase P450 enzyme CYP152K6 from Bacillus methanolicus. Journal of Inorganic Biochemistry, 188, 18–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Olmedo, A., Aranda, C., Del Río, J. C., Kiebist, J., Scheibner, K., Martínez, A. T., & Gutiérrez, A. (2016). From alkanes to carboxylic acids: Terminal oxygenation by a fungal peroxygenase. Angewandte Chemie, 128, 12436–12439.

    Article  Google Scholar 

  24. Chowhan, R. K., Rahaman, H., & Singh, L. R. (2020). Structural basis of peroxidase catalytic cycle of human Prdx6. Scientific Reports, 10, 17416.

  25. Lian, F.-M., Jiang, Y.-L., Yang, W., & Yang, X. (2020). Crystal structure of sulfonic peroxiredoxin Ahp1 in complex with thioredoxin Trx2 mimics a conformational intermediate during the catalytic cycle. International Journal of Biological Macromolecules, 161, 1055–1060.

    Article  CAS  PubMed  Google Scholar 

  26. Sun, C.-C., Dong, W.-R., Shao, T., Li, J.-Y., Zhao, J., Nie, L., Xiang, L.-X., Zhu, G., & Shao, J.-Z. (2017). Peroxiredoxin 1 (Prx1) is a dual-function enzyme by possessing Cys-independent catalase-like activity. The Biochemical Journal, 474, 1373–1394.

    Article  CAS  PubMed  Google Scholar 

  27. Yan, D., Wang, G., Xiong, F., Sun, W.-Y., Shi, Z., Lu, Y., Li, S., & Zhao, J. (2018). A selenium-catalysed para-amination of phenols. Nature Communications, 9, 4293.

  28. Zhang, Y., Liu, H., Dai, X., Cai, C., Wang, J., Wang, M., Shen, Y., & Wang, P. (2020). Impact of application of heat-activated persulfate oxidation treated erythromycin fermentation residue as a soil amendment: Soil chemical properties and antibiotic resistance. The Science of the Total Environment, 736, 139668.

    Article  CAS  PubMed  Google Scholar 

  29. Fejzagić, A. V., Gebauer, J., Huwa, N., & Classen, T. (2019). Halogenating enzymes for active agent synthesis: First steps are done and many have to follow. Molecules, 24, 4008.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wang, K., Huang, X., & Lin, K. (2019). Multiple catalytic roles of chloroperoxidase in the transformation of phenol: Products and pathways. Ecotoxicology and Environmental Safety, 179, 96–103.

    Article  CAS  PubMed  Google Scholar 

  31. Frank, A., Seel, C. J., Groll, M., & Gulder, T. (2016). Characterization of a cyanobacterial haloperoxidase and evaluation of its biocatalytic halogenation potential. ChemBioChem, 17, 2028–2032.

    Article  CAS  PubMed  Google Scholar 

  32. Li, F., & Tang, Y. (2021). The activation mechanism of peroxidase by ultrasound. Ultrasonics Sonochemistry, 71, 105362.

    Article  CAS  PubMed  Google Scholar 

  33. Wang, L., Wei, S., Pan, X., Liu, P., Du, X., Zhang, C., Pu, L., & Wang, Q. (2018). Enhanced turnover for the P450 119 peroxygenase-catalyzed asymmetric epoxidation of styrenes by random mutagenesis. Chemistry - A European Journal, 24, 2741–2749.

    Article  CAS  PubMed  Google Scholar 

  34. Molina-Espeja, P., Cañellas, M., Plou, F. J., Hofrichter, M., Lucas, F., Guallar, V., & Alcalde, M. (2016). Synthesis of 1-naphthol by a natural peroxygenase engineered by directed evolution. ChemBioChem, 17, 341–349.

    Article  CAS  PubMed  Google Scholar 

  35. Ramirez-Ramirez, J., Martin-Diaz, J., Pastor, N., Alcalde, M., & Ayala, M. (2020). Exploring the role of phenylalanine residues in modulating the flexibility and topography of the active site in the peroxygenase variant PaDa-I. International Journal of Molecular Sciences, 21, 5734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ma, N., Chen, Z., Chen, J., Chen, J., Wang, C., Zhou, H., Yao, L., Shoji, O., Watanabe, Y., & Cong, Z. (2018). Dual-functional small molecules for generating an efficient cytochrome P450BM3 peroxygenase. Angewandte Chemie, 130, 7754–7759.

    Article  Google Scholar 

  37. Humer, D., & Spadiut, O. (2019). Improving the performance of horseradish peroxidase by site-directed mutagenesis. International Journal of Molecular Sciences, 20, 916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sánchez-Alejandro, F., Baratto, M. C., Basosi, R., Graeve, O., & Vazquez-Duhalt, R. (2019). Addition of new catalytic sites on the surface of versatile peroxidase for enhancement of LRET catalysis. Enzyme and Microbial Technology, 131, 109429.

    Article  PubMed  Google Scholar 

  39. Fujieda, N., Nakano, T., Taniguchi, Y., Ichihashi, H., Sugimoto, H., Morimoto, Y., Nishikawa, Y., Kurisu, G., & Itoh, S. (2017). A well-defined osmium–cupin complex: Hyperstable artificial osmium peroxygenase. Journal of the American Chemical Society, 139, 5149–5155.

    Article  CAS  PubMed  Google Scholar 

  40. Yang, Y., Cho, I., Qi, X., Liu, P., & Arnold, F. H. (2019). An enzymatic platform for the asymmetric amination of primary, secondary and tertiary C(sp3)–H bonds. Nature Chemistry, 11, 987–993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ren, X., Liu, N., Chandgude, A. L., & Fasan, R. (2020). An enzymatic platform for the highly enantioselective and stereodivergent construction of cyclopropyl-δ-lactones. Angewandte Chemie, International Edition, 59, 21634–21639.

    Article  CAS  PubMed  Google Scholar 

  42. Cao, X., Liang, J., Aluko, R. E., & Thiyam-Holländer, U. (2019). In situ oxidation of canola meal sinapic acid by horseradish peroxidase (type II) and tyrosinase. Journal of Food Biochemistry, 43, e12884.

    Article  PubMed  Google Scholar 

  43. Sitte, E., & Senge, M. O. (2020). The red color of life transformed - Synthetic advances and emerging applications of protoporphyrin IX in chemical biology. European Journal of Organic Chemistry, 2020, 3171–3191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Stenner, R., Steventon, J. W., Seddon, A., & Anderson, J. R. (2020). A de novo peroxidase is also a promiscuous yet stereoselective carbene transferase. Proceedings of the National Academy of Sciences, 117, 1419–1428.

    Article  CAS  Google Scholar 

  45. Mirts, E. N., Petrik, I. D., Hosseinzadeh, P., Nilges, M. J., & Lu, Y. (2018). A designed heme-[4Fe-4S] metalloenzyme catalyzes sulfite reduction like the native enzyme. Science, 361, 1098–1101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Caserta, G., Chino, M., Firpo, V., Zambrano, G., Leone, L., D’Alonzo, D., Nastri, F., Maglio, O., Pavone, V., & Lombardi, A. (2018). Enhancement of peroxidase activity in artificial mimochrome VI catalysts through rational design. ChemBioChem, 19, 1823–1826.

    Article  CAS  PubMed  Google Scholar 

  47. Ibrahim, H., Mulyk, P., & Sen, D. (2019). DNA G-quadruplexes activate heme for robust catalysis of carbene transfer reactions. ACS Omega, 4, 15280–15288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang, Z. G., Li, Y., Wang, H., Wan, K., Liu, Q., Shi, X., & Ding, B. (2019). Enzyme mimic based on a self-assembled chitosan/DNA hybrid exhibits superior activity and tolerance. Chemistry - A European Journal, 25, 12576–12582.

    Article  CAS  PubMed  Google Scholar 

  49. Harraz, D. M., & Davis, J. T. (2018). A self-assembled peroxidase from 5′-GMP and heme. Chemical Communications, 54, 1587–1590.

    Article  CAS  PubMed  Google Scholar 

  50. Leone, L., Chino, M., Nastri, F., Maglio, O., Pavone, V., & Lombardi, A. (2020). Mimochrome, a metalloporphyrin-based catalytic Swiss knife†. Biotechnology and Applied Biochemistry, 67, 495–515.

    Article  CAS  PubMed  Google Scholar 

  51. Koebke, K. J., Kühl, T., Lojou, E., Demeler, B., Schoepp-Cothenet, B., Iranzo, O., Pecoraro, V. L., & Ivancich, A. (2020). The pH-induced selectivity between cysteine or histidine coordinated heme in an artificial α-helical metalloprotein. Angewandte Chemie, International Edition, 60, 3974–3978.

    Article  PubMed  Google Scholar 

  52. Bilal, M., Ashraf, S. S., Ferreira, L. F. R., Cui, J., Lou, W.-Y., Franco, M., & Iqbal, H. M. N. (2020). Nanostructured materials as a host matrix to develop robust peroxidases-based nanobiocatalytic systems. International Journal of Biological Macromolecules, 162, 1906–1923.

    Article  CAS  PubMed  Google Scholar 

  53. Zhang, L., Li, S., Dong, M., Jiang, Y., Li, R., Zhang, S., Lv, X., Chen, L., & Wang, H. (2017). Reconstituting redox active centers of heme-containing proteins with biomineralized gold toward peroxidase mimics with strong intrinsic catalysis and electrocatalysis for H2O2 detection. Biosensors & Bioelectronics, 87, 1036–1043.

    Article  CAS  Google Scholar 

  54. Zhang, W., Burek, B. O., Fernández-Fueyo, E., Alcalde, M., Bloh, J. Z., & Hollmann, F. (2017). Selective activation of C−H bonds in a cascade process combining photochemistry and biocatalysis. Angewandte Chemie, International Edition, 56, 15451–15455.

    Article  CAS  PubMed  Google Scholar 

  55. Feyza Özgen, F., Runda, M. E., Burek, B. O., Wied, P., Bloh, J. Z., Kourist, R., & Schmidt, S. (2020). Artificial light-harvesting complexes enable Rieske oxygenase catalyzed hydroxylations in non-photosynthetic cells. Angewandte Chemie, International Edition, 59, 3982–3987.

    Article  PubMed  Google Scholar 

  56. Cai, S., & Yang, R. (2020). Two-dimensional nanomaterials with enzyme-like properties for biomedical applications. Frontiers in Chemistry, 8, 565940.

  57. Bilal, M., Barceló, D., & Iqbal, H. M. N. (2020). Nanostructured materials for harnessing the power of horseradish peroxidase for tailored environmental applications. Science of the Total Environment, 749, 142360.

    Article  CAS  PubMed  Google Scholar 

  58. Yang, S., Yang, J., Wang, T., Li, L., Yu, S., Jia, R., & Chen, P. (2020). Construction of a combined enzyme system of graphene oxide and manganese peroxidase for efficient oxidation of aromatic compounds. Nanoscale, 12, 7976–7985.

    Article  CAS  PubMed  Google Scholar 

  59. Xi, Z., Gao, W., & Xia, X. (2020). Size effect in Pd−Ir core-shell nanoparticles as nanozymes. ChemBioChem, 21, 2440–2444.

    Article  CAS  PubMed  Google Scholar 

  60. Liu, D., Wang, D., Jing, X., Zhao, X., Xi, D., Dang, D., & Meng, L. (2020). Continuous phase regulation of MoSe2 from 2H to 1T for the optimization of peroxidase-like catalysis. Journal of Materials Chemistry, 8, 6451–6458.

    CAS  PubMed  Google Scholar 

  61. Li, M., Chen, J., Wu, W., Fang, Y., & Dong, S. (2020). Oxidase-like MOF-818 nanozyme with high specificity for catalysis of catechol oxidation. Journal of the American Chemical Society, 142, 15569–15574.

    Article  CAS  PubMed  Google Scholar 

  62. Kariyawasam, K., Di Meo, T., Hammerer, F., Valerio-Lepiniec, M., Sciortino, G., Maréchal, J. D., Minard, P., Mahy, J. P., Urvoas, A., & Ricoux, R. (2020). An artificial hemoprotein with inducible peroxidase- and monooxygenase-like activities. Chemistry - A European Journal, 26, 14929–14937.

    Article  CAS  PubMed  Google Scholar 

  63. Ricco, R., Wied, P., Nidetzky, B., Amenitsch, H., & Falcaro, P. (2020). Magnetically responsive horseradish peroxidase@ ZIF-8 for biocatalysis. Chemical Communications, 56, 5775–5778.

    Article  CAS  PubMed  Google Scholar 

  64. Wang, D., Chai, Y., Yuan, Y., & Yuan, R. (2019). Lattice-like DNA tetrahedron nanostructure as scaffold to locate GOx and HRP enzymes for highly efficient enzyme cascade reaction. ACS Applied Materials & Interfaces, 12, 2871–2877.

    Article  Google Scholar 

  65. Özacar, M., Mehde, A. A., Mehdi, W. A., Özacar, Z. Z., & Severgün, O. (2019). The novel multi cross-linked enzyme aggregates of protease, lipase, and catalase production from the sunflower seeds, characterization and application. Colloids and Surfaces. B, Biointerfaces, 173, 58–68.

    Article  PubMed  Google Scholar 

  66. Sun, D., Liu, X., Zhu, M., Chen, Y., Li, C., Cheng, X., Zhu, Z., Lu, F., & Qin, H.-M. (2019). Efficient biosynthesis of high-value succinic acid and 5-hydroxyleucine using a multienzyme cascade and whole-cell catalysis. Journal of Agricultural and Food Chemistry, 67, 12502–12510.

    Article  CAS  PubMed  Google Scholar 

  67. Dennig, A., Gandomkar, S., Cigan, E., Reiter, T. C., Haas, T., Hall, M., & Faber, K. (2018). Enantioselective biocatalytic formal α-amination of hexanoic acid to l-norleucine. Organic & Biomolecular Chemistry, 16, 8030–8033.

    Article  CAS  Google Scholar 

  68. Chen, Y., Chu, H., Liu, W., & Feng, W. (2019). Simultaneous synthesis of l-DOPA and oxidation of d-amino acid by specific coupling of a peroxidase to d-amino acid oxidase. Enzyme and Microbial Technology, 121, 8–16.

    Article  CAS  PubMed  Google Scholar 

  69. Liu, Q., Ma, X., Cheng, H., Xu, N., Liu, J., & Ma, Y. (2017). Co-expression of l-glutamate oxidase and catalase in Escherichia coli to produce α-ketoglutaric acid by whole-cell biocatalyst. Biotechnology Letters, 39, 913–919.

    Article  CAS  PubMed  Google Scholar 

  70. Yang, J., Liang, J., Shao, L., Liu, L., Gao, K., Zhang, J.-L., Sun, Z., Xu, W., Lin, P., Yu, R., & Zi, J. (2020). Green production of silybin and isosilybin by merging metabolic engineering approaches and enzymatic catalysis. Metabolic Engineering, 59, 44–52.

    Article  CAS  PubMed  Google Scholar 

  71. Chuaboon, L., Wongnate, T., Punthong, P., Kiattisewee, C., Lawan, N., Hsu, C. Y., Lin, C. H., Bornscheuer, U. T., & Chaiyen, P. (2019). One-pot bioconversion of l-arabinose to l-ribulose in an enzymatic cascade. Angewandte Chemie, International Edition, 58, 2428–2432.

    Article  CAS  PubMed  Google Scholar 

  72. Gandomkar, S., Dennig, A., Dordic, A., Hammerer, L., Pickl, M., Haas, T., Hall, M., & Faber, K. (2018). Biocatalytic oxidative cascade for the conversion of fatty acids into α-ketoacids via internal H2O2 recycling. Angewandte Chemie, International Edition, 57, 427–430.

    Article  CAS  PubMed  Google Scholar 

  73. Matthews, S., Tee, K. L., Rattray, N. J., McLean, K. J., Leys, D., Parker, D. A., Blankley, R. T., & Munro, A. W. (2017). Production of alkenes and novel secondary products by P450 OleTJE using novel H2O2-generating fusion protein systems. FEBS Letters, 591, 737–750.

    Article  CAS  PubMed  Google Scholar 

  74. Jiang, Y., Li, Z., Zheng, S., Xu, H., Zhou, Y. J., Gao, Z., Meng, C., & Li, S. (2020). Establishing an enzyme cascade for one-pot production of α-olefins from low-cost triglycerides and oils without exogenous H2O2 addition. Biotechnology for Biofuels, 13, 52.

  75. Carro, J., Fernández-Fueyo, E., Fernández-Alonso, C., Cañada, J., Ullrich, R., Hofrichter, M., Alcalde, M., Ferreira, P., & Martínez, A. T. (2018). Self-sustained enzymatic cascade for the production of 2,5-furandicarboxylic acid from 5-methoxymethylfurfural. Biotechnology for Biofuels, 11, 86.

  76. Jia, H. Y., Zong, M. H., Zheng, G. W., & Li, N. (2019). One-pot enzyme cascade for controlled synthesis of furancarboxylic acids from 5-hydroxymethylfurfural by H2O2 internal recycling. ChemSusChem, 12, 4764–4768.

    Article  CAS  PubMed  Google Scholar 

  77. Li, R., Zhou, X., Liu, D., & Feng, W. (2018). Enhancing the activity and stability of Mn-superoxide dismutase by one-by-one ligation to catalase. Free Radical Biology & Medicine, 129, 138–145.

    Article  CAS  Google Scholar 

  78. Liu, Z., Lv, Y., & An, Z. (2017). Enzymatic cascade catalysis for the synthesis of multiblock and ultrahigh-molecular-weight polymers with oxygen tolerance. Angewandte Chemie, 129, 14040–14044.

    Article  Google Scholar 

  79. Zwick, C., Sosa, M., & Renata, H. (2019). Characterization of a citrulline 4-hydroxylase from Nonribosomal Peptide GE81112 biosynthesis and engineering of its substrate specificity for the chemoenzymatic synthesis of enduracididine. Angewandte Chemie (International Ed. in English), 58, 18854–18858.

    Article  CAS  PubMed  Google Scholar 

  80. Shrivas, P., Zodape, S., Wankhade, A., & Pratap, U. (2020). Facile synthesis of benzazoles through biocatalytic cyclization and dehydrogenation employing catalase in water. Enzyme and Microbial Technology, 138, 109562.

    Article  CAS  PubMed  Google Scholar 

  81. Zhang, J.-Q., Li, G.-P., Kang, Y.-L., Teng, B.-H., & Yao, C.-S. (2017). Biomimetic synthesis of resveratrol trimers catalyzed by horseradish peroxidase. Molecules, 22, 819.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Hammer, A. K., Albrecht, F., Hahne, F., Jordan, P., Fraatz, M. A., Ley, J., Geissler, T., Schrader, J., Zorn, H., & Buchhaupt, M. (2020). Biotechnological production of odor-active methyl-branched aldehydes by a novel α-dioxygenase from Crocosphaera subtropica. Journal of Agricultural and Food Chemistry, 68, 10432–10440.

    Article  CAS  PubMed  Google Scholar 

  83. Levin, G., Gómez, S., Glodowsky, A., Cascone, O., & Hernáiz, M. J. (2018). Two-step enzymatic strategy for the synthesis of a smart phenolic polymer and further immobilization of a β-galactosidase able to catalyze transglycosydation reaction. International Journal of Biological Macromolecules, 117, 264–270.

    Article  CAS  PubMed  Google Scholar 

  84. Vanella, R., Ta, D. T., & Nash, M. A. (2019). Enzyme-mediated hydrogel encapsulation of single cells for high-throughput screening and directed evolution of oxidoreductases. Biotechnology and Bioengineering, 116, 1878–1886.

    Article  CAS  PubMed  Google Scholar 

  85. Fetherolf, M. M., Levy-Booth, D. J., Navas, L. E., Liu, J., Grigg, J. C., Wilson, A., Katahira, R., Beckham, G. T., Mohn, W. W., & Eltis, L. D. (2020). Characterization of alkylguaiacol-degrading cytochromes P450 for the biocatalytic valorization of lignin. Proceedings of the National Academy of Sciences, 117, 25771–25778.

    Article  CAS  Google Scholar 

  86. Ion, S. G., Brudiu, T., Hanganu, A., Munteanu, F., Enache, M., Maria, G.-M., Tudorache, M., & Parvulescu, V. (2020). Biocatalytic strategy for grafting natural lignin with aniline. Molecules, 25, 4921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wang, C., Ouyang, X., Su, S., Liang, X., Zhang, C., Wang, W., Yuan, Q., & Li, Q. (2016). Effect of sulfonated lignin on enzymatic activity of the ligninolytic enzymes Cα-dehydrogenase LigD and β-etherase LigF. Enzyme and Microbial Technology, 93-94, 59–69.

    Article  CAS  PubMed  Google Scholar 

  88. Wang, X., Yao, B., & Su, X. (2018). Linking enzymatic oxidative degradation of lignin to organics detoxification. International Journal of Molecular Sciences, 19, 3373.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Catucci, G., Valetti, F., Sadeghi, S. J., & Gilardi, G. (2020). Biochemical features of dye-decolorizing peroxidases: Current impact on lignin degradation. Biotechnology and Applied Biochemistry, 67, 751–759.

    Article  CAS  PubMed  Google Scholar 

  90. Lin, L., Wang, X., Cao, L., & Xu, M. (2019). Lignin catabolic pathways reveal unique characteristics of dye-decolorizing peroxidases inPseudomonas putida. Environmental Microbiology, 21, 1847–1863.

    Article  CAS  PubMed  Google Scholar 

  91. Moural, T. W., Lewis, K. M., Barnaba, C., Zhu, F., Palmer, N. A., Sarath, G., Scully, E. D., Jones, J. P., Sattler, S. E., & Kang, C. (2017). Characterization of class III peroxidases from Switchgrass. Plant Physiology, 173, 417–433.

    Article  CAS  PubMed  Google Scholar 

  92. Ion, S., Opris, C., Cojocaru, B., Tudorache, M., Zgura, I., Galca, A. C., Bodescu, A. M., Enache, M., Maria, G.-M., & Parvulescu, V. I. (2018). One-pot enzymatic production of lignin-composites. Frontiers in Chemistry, 6, 124.

  93. Fall, I., Czerwiec, Q., Abdellaoui, S., Doumeche, B., Ochs, M., Remond, C., & Rakotoarivonina, H. (2023). A thermostable bacterial catalase-peroxidase oxidizes phenolic compounds derived from lignins. Applied Microbiology and Biotechnology, 107, 201–217.

    Article  CAS  PubMed  Google Scholar 

  94. Ilić Đurđić, K., Ostafe, R., Đurđević Đelmaš, A., Popović, N., Schillberg, S., Fischer, R., & Prodanović, R. (2020). Saturation mutagenesis to improve the degradation of azo dyes by versatile peroxidase and application in form of VP-coated yeast cell walls. Enzyme and Microbial Technology, 136, 109509.

    Article  PubMed  Google Scholar 

  95. Krahe, N.-K., Berger, R. G., & Ersoy, F. (2020). A DyP-type peroxidase of Pleurotus sapidus with alkene cleaving activity. Molecules, 25, 1536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Sung, H. J., Khan, M. F., & Kim, Y. H. (2019). Recombinant lignin peroxidase-catalyzed decolorization of melanin using in-situ generated H2O2 for application in whitening cosmetics. International Journal of Biological Macromolecules, 136, 20–26.

    Article  CAS  PubMed  Google Scholar 

  97. Chino, M., La Gatta, S., Leone, L., De Fenza, M., Lombardi, A., Pavone, V., & Maglio, O. (2023). Dye decolorization by a miniaturized peroxidase Fe-mimochromeVI*a. International Journal of Molecular Sciences, 24, 11070.

  98. Bilal, M., Barceló, D., & Iqbal, H. M. N. (2020). Persistence, ecological risks, and oxidoreductases-assisted biocatalytic removal of triclosan from the aquatic environment. Science of the Total Environment, 735, 139194.

    Article  CAS  PubMed  Google Scholar 

  99. Xie, P., Fan, L., Huang, L., & Zhang, C. (2021). Oxidative polymerization of hydroxytyrosol catalyzed by laccase, tyrosinase or horseradish peroxidase: influencing factors and molecular simulations. Journal of Biomolecular Structure & Dynamics, 39, 5486–5497.

    Article  CAS  Google Scholar 

  100. Bilal, M., Singh, A. K., Iqbal, H. M. N., Kim, T. H., Boczkaj, G., Athmaneh, K., & Ashraf, S. S. (2023). Bio-mitigation of organic pollutants using horseradish peroxidase as a promising biocatalytic platform for environmental sustainability. Environmental Research, 239, 117192.

    Article  CAS  PubMed  Google Scholar 

  101. Leng, Y., Bao, J., Xiao, H., Song, D., Du, J., Mohapatra, S., Werner, D., & Wang, J. (2020). Transformation mechanisms of tetracycline by horseradish peroxidase with/without redox mediator ABTS for variable water chemistry. Chemosphere, 258, 127306.

    Article  CAS  PubMed  Google Scholar 

  102. Yao, Y., & Li, Q. X. (2023). Efficient, fast and robust degradation of chlortetracycline in wastewater catalyzed by recombinant Arthromyces ramosus peroxidase. The Science of the Total Environment, 858, 159872.

    Article  CAS  PubMed  Google Scholar 

  103. Liu, X., Xue, P., Jia, F., Shi, K., Gu, Y., Ma, L., & Li, R. (2021). A novel approach to efficient degradation of indole using co-immobilized horseradish peroxidase-syringaldehyde as biocatalyst. Chemosphere, 262, 128411.

    Article  CAS  PubMed  Google Scholar 

  104. Cai, S., Chen, L.-W., Ai, Y.-C., Qiu, J.-G., Wang, C.-H., Shi, C., He, J., Cai, T.-M., & Liu, S.-J. (2017). Degradation of diphenyl ether in Sphingobium phenoxybenzoativorans SC_3 is initiated by a novel ring cleavage dioxygenase. Applied and Environmental Microbiology, 83, e00104–e00117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Mukherjee, D., Bhattacharya, S., Taylor, K. E., & Biswas, N. (2019). Enzymatic treatment for removal of hazardous aqueous arylamines, 4,4′-methylenedianiline and 4,4′-thiodianiline. Chemosphere, 235, 365–372.

    Article  CAS  PubMed  Google Scholar 

  106. Kurapati, R., Mukherjee, S. P., Martín, C., Bepete, G., Vázquez, E., Pénicaud, A., Fadeel, B., & Bianco, A. (2018). Degradation of single-layer and few-layer graphene by neutrophil myeloperoxidase. Angewandte Chemie, International Edition, 57, 11722–11727.

    Article  CAS  PubMed  Google Scholar 

  107. Kurapati, R., Martìn, C., Palermo, V., Nishina, Y., & Bianco, A. (2021). Biodegradation of graphene materials catalyzed by human eosinophil peroxidase. Faraday Discussions, 227, 189–203.

    Article  CAS  PubMed  Google Scholar 

  108. Wang, J. M., Wang, C. M., Men, X., Yue, T. Q., Madzak, C., Xiang, X. H., Xiang, H. Y., & Zhang, H. B. (2020). Construction of arming Yarrowia lipolytica surface-displaying soybean seed coat peroxidase for use as whole-cell biocatalyst. Enzyme and Microbial Technology, 135, 109498.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was funded by “S&T Program of Hebei” (B2021208018).

Author information

Authors and Affiliations

Authors

Contributions

CS contributed to search the articles and write the paper. YW wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Chen Shen.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key points

1Recent discovery of natural and non-natural peroxidase

2Application of peroxidase in synthesis and degradation

3To provide reference of peroxidase participated in fine chemical industry

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, C., Wang, Y. Recent Progress on Peroxidase Modification and Application. Appl Biochem Biotechnol (2024). https://doi.org/10.1007/s12010-023-04835-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12010-023-04835-w

Keywords

Navigation