Skip to main content

Advertisement

Log in

Construction and Evaluation of an M2 Macrophage-Related Prognostic Model for Colon Cancer

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Colon cancer (CC) is a primary human malignancy. Recently, the mechanism of the tumor microenvironment (TME) in CC has been a hot topic of research. However, there is uncertainty regarding the contribution of M2 macrophages and related genes to the prognosis for CC. M2 macrophage-related genes (M2RGs) were obtained from The Cancer Genome Atlas (TCGA) database. Immune cell infiltration in CC tissue was assessed by Cibersort. Based on the TCGA-COAD training set, a Least Absolute Shrinkage and Selection Operator (LASSO) Cox risk model was constructed and its efficiency was evaluated by analyzing risk profiles and survival profiles. Using gene set enrichment analysis (GSEA), the functional distinctions between high-risk and low-risk categories were further investigated. Finally, potential immune checkpoints, immunotherapy efficiency, and clinical treatment of high-risk patients were evaluated. A total of 1063 M2RGs were identified in TCGA-COAD, 32 of these were confirmed to be strongly related to overall survival (OS), and 14 of these were picked to construct an OS-oriented prognostic model in CC patients. The M2RG signature had a positive correlation with unfavorable prognosis according to the survival analysis. Correlation analysis revealed that the risk model was positively associated with clinicopathological characteristics, immune cell infiltration, immune checkpoint inhibitor targets, the risk of immune escape, and the efficiency of anti-cancer medications. The risk model created using M2RGs may be useful in predicting the prognosis of CC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The TCGA, GEO, GEPIA and HPA databases are publicly available.

References

  1. Bussard, K. M., Mutkus, L., Stumpf, K., Gomez-Manzano, C., & Marini, F. C. (2016). Tumor-associated stromal cells as key contributors to the tumor microenvironment. Breast Cancer Research: BCR, 18(1), 84. https://doi.org/10.1186/s13058-016-0740-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Matos, A. I., Carreira, B., Peres, C., Moura, L. I. F., Conniot, J., Fourniols, T., … Florindo, H. F. (2019). Nanotechnology is an important strategy for combinational innovative chemo-immunotherapies against colorectal cancer. Journal of Controlled Release: Official Journal of the Controlled Release Society, 307, 108–138. https://doi.org/10.1016/j.jconrel.2019.06.017

  3. Gabrilovich, D. I., Ostrand-Rosenberg, S., & Bronte, V. (2012). Coordinated regulation of myeloid cells by tumours. Nature Reviews Immunology, 12(4), 253–268. https://doi.org/10.1038/nri3175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fridman, W. H., Pagès, F., Sautès-Fridman, C., & Galon, J. (2012). The immune contexture in human tumours: Impact on clinical outcome. Nature Reviews Cancer, 12(4), 298–306. https://doi.org/10.1038/nrc3245

    Article  CAS  PubMed  Google Scholar 

  5. Wang, H., Tian, T., & Zhang, J. (2021). Tumor-associated macrophages (TAMs) in colorectal cancer (CRC): From mechanism to therapy and prognosis. International Journal of Molecular Sciences, 22(16), 8470. https://doi.org/10.3390/ijms22168470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Molgora, M., Esaulova, E., Vermi, W., Hou, J., Chen, Y., Luo, J., … Colonna, M. (2020). TREM2 modulation remodels the tumor myeloid landscape enhancing anti-PD-1 immunotherapy. Cell, 182(4), 886–900.e17. https://doi.org/10.1016/j.cell.2020.07.013

  7. Mosser, D. M., & Edwards, J. P. (2008). Exploring the full spectrum of macrophage activation. Nature Reviews. Immunology, 8(12), 958–969. https://doi.org/10.1038/nri2448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Guiducci, C., Vicari, A. P., Sangaletti, S., Trinchieri, G., & Colombo, M. P. (2005). Redirecting in vivo elicited tumor infiltrating macrophages and dendritic cells towards tumor rejection. Cancer Research, 65(8), 3437–3446. https://doi.org/10.1158/0008-5472.CAN-04-4262

    Article  CAS  PubMed  Google Scholar 

  9. Shabo, I., Olsson, H., Sun, X.-F., & Svanvik, J. (2009). Expression of the macrophage antigen CD163 in rectal cancer cells is associated with early local recurrence and reduced survival time. International Journal of Cancer, 125(8), 1826–1831. https://doi.org/10.1002/ijc.24506

    Article  CAS  PubMed  Google Scholar 

  10. Pinto, M. L., Rios, E., Durães, C., Ribeiro, R., Machado, J. C., Mantovani, A., … Oliveira, M. J. (2019). The two faces of tumor-associated macrophages and their clinical significance in colorectal cancer. Frontiers in Immunology, 10, 1875. https://doi.org/10.3389/fimmu.2019.01875

  11. Waniczek, D., Lorenc, Z., Śnietura, M., Wesecki, M., Kopec, A., & Muc-Wierzgoń, M. (2017). Tumor-associated macrophages and regulatory T cells infiltration and the clinical outcome in colorectal cancer. Archivum Immunologiae Et Therapiae Experimentalis, 65(5), 445–454. https://doi.org/10.1007/s00005-017-0463-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shibutani, M., Maeda, K., Nagahara, H., Fukuoka, T., Nakao, S., Matsutani, S., … Ohira, M. (2017). The peripheral monocyte count is associated with the density of tumor-associated macrophages in the tumor microenvironment of colorectal cancer: A retrospective study. BMC Cancer, 17(1), 404. https://doi.org/10.1186/s12885-017-3395-1

  13. Väyrynen, J. P., Haruki, K., Lau, M. C., Väyrynen, S. A., Zhong, R., Dias Costa, A., … Nowak, J. A. (2021). The prognostic role of macrophage polarization in the colorectal cancer microenvironment. Cancer Immunology Research, 9(1), 8–19. https://doi.org/10.1158/2326-6066.CIR-20-0527

  14. Algars, A., Irjala, H., Vaittinen, S., Huhtinen, H., Sundström, J., Salmi, M., … Jalkanen, S. (2012). Type and location of tumor-infiltrating macrophages and lymphatic vessels predict survival of colorectal cancer patients. International Journal of Cancer, 131(4), 864–873. https://doi.org/10.1002/ijc.26457

  15. Madden, K., & Kasler, M. K. (2019). Immune checkpoint inhibitors in lung cancer and melanoma. Seminars in Oncology Nursing, 35(5), 150932. https://doi.org/10.1016/j.soncn.2019.08.011

    Article  PubMed  Google Scholar 

  16. Smith, J. J., Deane, N. G., Wu, F., Merchant, N. B., Zhang, B., Jiang, A., … Beauchamp, R. D. (2010). Experimentally derived metastasis gene expression profile predicts recurrence and death in patients with colon cancer. Gastroenterology, 138(3), 958–968. https://doi.org/10.1053/j.gastro.2009.11.005

  17. Mariathasan, S., Turley, S. J., Nickles, D., Castiglioni, A., Yuen, K., Wang, Y., … Powles, T. (2018). TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature, 554(7693), 544–548. https://doi.org/10.1038/nature25501

  18. Wu, J., Li, L., Zhang, H., Zhao, Y., Zhang, H., Wu, S., & Xu, B. (2021). A risk model developed based on tumor microenvironment predicts overall survival and associates with tumor immunity of patients with lung adenocarcinoma. Oncogene, 40(26), 4413–4424. https://doi.org/10.1038/s41388-021-01853-y

    Article  CAS  PubMed  Google Scholar 

  19. Zeng, C., Liu, Y., He, R., Lu, X., Dai, Y., Qi, G., … Liu, Q. (2022). Identification and validation of a novel cellular senescence-related lncRNA prognostic signature for predicting immunotherapy response in stomach adenocarcinoma. Frontiers in Genetics, 13, 935056. https://doi.org/10.3389/fgene.2022.935056

  20. Van der Jeught, K., Xu, H.-C., Li, Y.-J., Lu, X.-B., & Ji, G. (2018). Drug resistance and new therapies in colorectal cancer. World Journal of Gastroenterology, 24(34), 3834–3848. https://doi.org/10.3748/wjg.v24.i34.3834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Canton, J. (2014). Phagosome maturation in polarized macrophages. Journal of Leukocyte Biology, 96(5), 729–738. https://doi.org/10.1189/jlb.1MR0114-021R

    Article  CAS  PubMed  Google Scholar 

  22. Ladanyi, A., Mukherjee, A., Kenny, H. A., Johnson, A., Mitra, A. K., Sundaresan, S., … Lengyel, E. (2018). Adipocyte-induced CD36 expression drives ovarian cancer progression and metastasis. Oncogene, 37(17), 2285–2301. https://doi.org/10.1038/s41388-017-0093-z

  23. Calvo, D., Gómez-Coronado, D., Suárez, Y., Lasunción, M. A., & Vega, M. A. (1998). Human CD36 is a high affinity receptor for the native lipoproteins HDL, LDL, and VLDL. Journal of Lipid Research, 39(4), 777–788.

    Article  CAS  PubMed  Google Scholar 

  24. Montero-Calle, A., Gómez de Cedrón, M., Quijada-Freire, A., Solís-Fernández, G., López-Alonso, V., Espinosa-Salinas, I., … Barderas, R. (2022). Metabolic reprogramming helps to define different metastatic tropisms in colorectal cancer. Frontiers in Oncology, 12, 903033. https://doi.org/10.3389/fonc.2022.903033

  25. Chen, C.-H., Ho, H.-H., Jiang, W.-C., Ao-Ieong, W.-S., Wang, J., Orekhov, A. N., … Yet, S.-F. (2022). Cysteine-rich protein 2 deficiency attenuates angiotensin II-induced abdominal aortic aneurysm formation in mice. Journal of Biomedical Science, 29(1), 25. https://doi.org/10.1186/s12929-022-00808-z

  26. Novelli, D., Fumagalli, F., Staszewsky, L., Ristagno, G., Olivari, D., Masson, S., … Latini, R. (2019). Monocrotaline-induced pulmonary arterial hypertension: Time-course of injury and comparative evaluation of macitentan and Y-27632, a Rho kinase inhibitor. European Journal of Pharmacology, 865, 172777. https://doi.org/10.1016/j.ejphar.2019.172777

  27. Abisambra, J., Jinwal, U. K., Miyata, Y., Rogers, J., Blair, L., Li, X., … Dickey, C. A. (2013). Allosteric heat shock protein 70 inhibitors rapidly rescue synaptic plasticity deficits by reducing aberrant tau. Biological Psychiatry, 74(5), 367–374. https://doi.org/10.1016/j.biopsych.2013.02.027

  28. Field, C. J., Perez, A. M., Samet, T., Ricles, V., Iovine, M. K., & Lowe-Krentz, L. J. (2022). Involvement of transmembrane protein 184a during angiogenesis in zebrafish embryos. Frontiers in Physiology, 13, 845407. https://doi.org/10.3389/fphys.2022.845407

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sui, C., Wang, G., Chen, Q., & Ma, J. (2014). Variation risks of SFRP2 hypermethylation between precancerous disease and colorectal cancer. Tumour Biology: The Journal of the International Society for Oncodevelopmental Biology and Medicine, 35(10), 10457–10465. https://doi.org/10.1007/s13277-014-2313-2

    Article  CAS  PubMed  Google Scholar 

  30. Li, D., Bi, F.-F., Chen, N.-N., Cao, J.-M., Sun, W.-P., Zhou, Y.-M., … Yang, Q. (2014). Epigenetic repression of phosphatidylethanolamine N-methyltransferase (PEMT) in BRCA1-mutated breast cancer. Oncotarget, 5(5), 1315–1325. https://doi.org/10.18632/oncotarget.1800

  31. Umeda, S., Kanda, M., Shimizu, D., Nakamura, S., Sawaki, K., Inokawa, Y., … Kodera, Y. (2022). Lysosomal-associated membrane protein family member 5 promotes the metastatic potential of gastric cancer cells. Gastric Cancer: Official Journal of the International Gastric Cancer Association and the Japanese Gastric Cancer Association, 25(3), 558–572. https://doi.org/10.1007/s10120-022-01284-y

  32. Wang, J., Song, Z., Ren, L., Zhang, B., Zhang, Y., Yang, X., … Feng, C. (2022). Pan-cancer analysis supports MAPK12 as a potential prognostic and immunotherapeutic target in multiple tumor types, including in THCA. Oncology Letters, 24(6), 445. https://doi.org/10.3892/ol.2022.13565

  33. Ruan, W., Yang, Y., Yu, Q., Huang, T., Wang, Y., Hua, L., … Pan, R. (2021). FUT11 is a target gene of HIF1α that promotes the progression of hepatocellular carcinoma. Cell Biology International, 45(11), 2275–2286. https://doi.org/10.1002/cbin.11675

  34. Zhang, P., Tang, W., Jiang, Y., Lyu, F., Liu, Z., Xiao, Y., & Wang, D. (2022). Dry and wet experiments reveal the significant role of FUT11 in clear cell renal cell carcinoma. International Immunopharmacology, 113(Pt B), 109447. https://doi.org/10.1016/j.intimp.2022.109447

    Article  CAS  PubMed  Google Scholar 

  35. Sato, S., Nakamura, T., Katagiri, T., Tsuchikawa, T., Kushibiki, T., Hontani, K., … Hirano, S. (2017). Molecular targeting of cell-permeable peptide inhibits pancreatic ductal adenocarcinoma cell proliferation. Oncotarget, 8(69), 113662–113672. https://doi.org/10.18632/oncotarget.21939

  36. Pei, D., Xu, C., Wang, D., Shi, X., Zhang, Y., Liu, Y., … Zhu, H. (2022). A novel prognostic signature associated with the tumor microenvironment in kidney renal clear cell carcinoma. Frontiers in Oncology, 12, 912155. https://doi.org/10.3389/fonc.2022.912155

  37. Reijneveld, J. F., Ocampo, T. A., Shahine, A., Gully, B. S., Vantourout, P., Hayday, A. C., … Van Rhijn, I. (2020). Human γδ T cells recognize CD1b by two distinct mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 117(37), 22944–22952. https://doi.org/10.1073/pnas.2010545117

  38. Tang, M., Chen, J., Zeng, T., Ye, D.-M., Li, Y.-K., Zou, J., & Zhang, Y.-P. (2022). Systemic analysis of the DNA replication regulator origin recognition complex in lung adenocarcinomas identifies prognostic and expression significance. Cancer Medicine. https://doi.org/10.1002/cam4.5238

    Article  PubMed  PubMed Central  Google Scholar 

  39. Baines, C. P., Kaiser, R. A., Sheiko, T., Craigen, W. J., & Molkentin, J. D. (2007). Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death. Nature Cell Biology, 9(5), 550–555. https://doi.org/10.1038/ncb1575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. The lncRNA BDNF-AS/WDR5/FBXW7 axis mediates ferroptosis in gastric cancer peritoneal metastasis by regulating VDAC3 ubiquitination - PubMed. (n.d.). Retrieved January 20, 2023, from https://pubmed.ncbi.nlm.nih.gov/35280682/

  41. Edin, S., Wikberg, M. L., Dahlin, A. M., Rutegård, J., Öberg, Å., Oldenborg, P.-A., & Palmqvist, R. (2012). The distribution of macrophages with a M1 or M2 phenotype in relation to prognosis and the molecular characteristics of colorectal cancer. PLoS One, 7(10), e47045. https://doi.org/10.1371/journal.pone.0047045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hu, Z., Teng, X.-L., Zhang, T., Yu, X., Ding, R., Yi, J., … Zou, Q. (2021). SENP3 senses oxidative stress to facilitate STING-dependent dendritic cell antitumor function. Molecular Cell, 81(5), 940–952.e5. https://doi.org/10.1016/j.molcel.2020.12.024

  43. Ammendola, M., Sacco, R., Donato, G., Zuccalà, V., Russo, E., Luposella, M., … Ranieri, G. (2013). Mast cell positivity to tryptase correlates with metastatic lymph nodes in gastrointestinal cancer patients treated surgically. Oncology, 85(2), 111–116. https://doi.org/10.1159/000351145

  44. Prognostic significance of mast cell number and microvascular density for the survival of patients with primary colorectal cancer - PubMed. (n.d.). Retrieved February 5, 2023, from https://pubmed.ncbi.nlm.nih.gov/17645466/

  45. Tumour angiogenesis and mast cell density in the prognostic assessment of colorectal carcinomas - PubMed. (n.d.). Retrieved February 5, 2023, from https://pubmed.ncbi.nlm.nih.gov/15888280/

  46. Prognostic significance of eosinophils and mast cells in rectal cancer: Findings from the National Surgical Adjuvant Breast and Bowel Project (protocol R-01) - PubMed. (n.d.). Retrieved February 5, 2023, from https://pubmed.ncbi.nlm.nih.gov/2562788/

  47. Mao, Y., Feng, Q., Zheng, P., Yang, L., Zhu, D., Chang, W., … Xu, J. (2018). Low tumor infiltrating mast cell density confers prognostic benefit and reflects immunoactivation in colorectal cancer. International Journal of Cancer, 143(9), 2271–2280. https://doi.org/10.1002/ijc.31613

  48. A new dawn for eosinophils in the tumour microenvironment - PubMed. (n.d.). Retrieved February 6, 2023, from https://pubmed.ncbi.nlm.nih.gov/32678342/

  49. Astigiano, S., Morandi, B., Costa, R., Mastracci, L., D’Agostino, A., Ratto, G. B., … Frumento, G. (2005). Eosinophil granulocytes account for indoleamine 2,3-dioxygenase-mediated immune escape in human non-small cell lung cancer. Neoplasia (New York, N.Y.), 7(4), 390–396. https://doi.org/10.1593/neo.04658

  50. Recurrent R-spondin fusions in colon cancer | Nature. (n.d.). Retrieved February 6, 2023, from https://jlu.doc110.com/https/6a6c7576706e6973746865676f6f642146ab1ccaa48adfb6349e6380fd54/articles/nature11282

  51. Frenel, J.-S., Le Tourneau, C., O’Neil, B., Ott, P. A., Piha-Paul, S. A., Gomez-Roca, C., … Varga, A. (2017). Safety and efficacy of pembrolizumab in advanced, programmed death ligand 1-positive cervical cancer: Results from the phase Ib KEYNOTE-028 trial. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 35(36), 4035–4041. https://doi.org/10.1200/JCO.2017.74.5471

  52. Majidpoor, J., & Mortezaee, K. (2021). The efficacy of PD-1/PD-L1 blockade in cold cancers and future perspectives. Clinical Immunology (Orlando, Fla.), 226, 108707. https://doi.org/10.1016/j.clim.2021.108707

  53. Zengin, M., Zergeroğlu, S., Okcu, O., & Benek, S. (2021). PD-1 and PD-L2 expression predict relapse risk and poor survival in patients with stage III colorectal cancer. Cellular Oncology (Dordrecht), 44(2), 423–432. https://doi.org/10.1007/s13402-020-00579-5

    Article  CAS  PubMed  Google Scholar 

  54. Huang, K.C.-Y., Chiang, S.-F., Chen, T.-W., Chen, W.T.-L., Yang, P.-C., Ke, T.-W., & Chao, K. S. C. (2020). Prognostic relevance of programmed cell death 1 ligand 2 (PDCD1LG2/PD-L2) in patients with advanced stage colon carcinoma treated with chemotherapy. Scientific Reports, 10(1), 22330. https://doi.org/10.1038/s41598-020-79419-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. PD-L2 expression in colorectal cancer: Independent prognostic effect and targetability by deglycosylation - PubMed. (n.d.). Retrieved February 6, 2023, from https://pubmed.ncbi.nlm.nih.gov/28811964/

  56. Sridhar, S. S., & Goodwin, P. J. (2009). Insulin-insulin-like growth factor axis and colon cancer. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 27(2), 165–167. https://doi.org/10.1200/JCO.2008.19.8937

    Article  PubMed  Google Scholar 

  57. Solomon, J. P., & Hechtman, J. F. (2019). Detection of NTRK fusions: Merits and limitations of current diagnostic platforms. Cancer Research, 79(13), 3163–3168. https://doi.org/10.1158/0008-5472.CAN-19-0372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Pietrantonio, F., Di Nicolantonio, F., Schrock, A. B., Lee, J., Tejpar, S., Sartore-Bianchi, A., … Cremolini, C. (2017). ALK, ROS1, and NTRK rearrangements in metastatic colorectal cancer. Journal of the National Cancer Institute, 109(12). https://doi.org/10.1093/jnci/djx089

  59. PI3K therapy reprograms mitochondrial trafficking to fuel tumor cell invasion - PubMed. (n.d.). Retrieved February 7, 2023, from https://pubmed.ncbi.nlm.nih.gov/26124089/.

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by MJ and YC; figure and table preparation was performed by LZ, LY, and CH. The first draft of the manuscript was written by MJ, and the draft of the manuscript was revised and supplemented by LL. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Lin Liu.

Ethics declarations

Ethics Approval

Ethical approval was not required.

Consent for Publication

All authors agreed to publish the research in this journal.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 5052 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, M., Chen, Y., Zhang, L. et al. Construction and Evaluation of an M2 Macrophage-Related Prognostic Model for Colon Cancer. Appl Biochem Biotechnol (2023). https://doi.org/10.1007/s12010-023-04789-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12010-023-04789-z

Keywords

Navigation