Skip to main content
Log in

Engineered β-glycosidase from Hyperthermophilic Sulfolobus solfataricus with Improved Rd-hydrolyzing Activity for Ginsenoside Compound K Production

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Hyperthermophilic Sulfolobus solfataricus β-glycosidase (SS-βGly), with higher stability and activity than mesophilic enzymes, has potential for industrial ginsenosides biotransformation. However, its relatively low ginsenoside Rd-hydrolyzing activity limits the production of pharmaceutically active minor ginsenoside compound K (CK). In this study, first, we used molecular docking to predict the key enzyme residues that may hypothetically interact with ginsenoside Rd. Then, based on sequence alignment and alanine scanning mutagenesis approach, key variant sites were identified that might improve the enzyme catalytic efficiency. The enzyme catalytic efficiency (kcat/Km) and substrate affinity (Km) of the N264D variant enzyme for ginsenoside Rd increased by 60% and decreased by 17.9% compared with WT enzyme, respectively, which may be due to a decrease in the binding free energy (∆G) between the variant enzyme and substrate Rd. In addition, Markov state models (MSM) analysis during the whole 1000-ns MD simulations indicated that altering N264 to D made the variant enzyme achieve a more stable SS-βGly conformational state than the wild-type (WT) enzyme and corresponding Rd complex. Under identical conditions, the relative activities and the CK conversion rates of the N264D enzyme were 1.7 and 1.9 folds higher than those of the WT enzyme. This study identified an excellent hyperthermophilic β-glycosidase candidate for industrial biotransformation of ginsenosides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The data generated and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Shin, K. C., Kim, T. H., Choi, J. H., & Oh, D. K. (2018). Complete biotransformation of protopanaxadiol-type ginsenosides to 20-O-β-glucopyranosyl-20(S)-protopanaxadiol using a novel and thermostable β-glucosidase. Journal of Agricultural and Food Chemistry, 66, 2822–2829.

    Article  CAS  PubMed  Google Scholar 

  2. Hossen, M. J., Hong, Y. D., Baek, K. S., Yoo, S., Hong, Y. H., Kim, J. H., Lee, J. O., Kim, D., Park, J., & Cho, J. Y. (2017). In vitro antioxidative and anti-inflammatory effects of the compound K-rich fraction BIOGF1K, prepared from Panax ginseng. Journal of Ginseng Research, 41, 43–51.

    Article  PubMed  Google Scholar 

  3. Hong, Y. H., Kim, D., Nam, G., Yoo, S., Han, S. Y., Jeong, S. G., Kim, E., Jeong, D., Yoon, K., Kim, S., Park, J., & Cho, J. Y. (2018). Photoaging protective effects of BIOGF1K, a compound-K-rich fraction prepared from Panax ginseng Journal of Ginseng Research, 42, 81–89.

    Article  PubMed  Google Scholar 

  4. Kim, E., Kim, D., Yoo, S., Hong, Y. H., Han, S. Y., Jeong, S., Jeong, D., Kim, J. H., Cho, J. Y., & Park, J. (2018). The skin protective effects of compound K, a metabolite of ginsenoside Rb1 from Panax ginseng. Journal of Ginseng Research, 42, 218–224.

    Article  PubMed  Google Scholar 

  5. Li, C. W., Deng, M. Z., Gao, Z. J., Dang, Y. Y., Zheng, G. D., Yang, X. J., Chao, Y. X., Cai, Y. F., & Wu, X. L. (2020). Effects of compound K, a metabolite of ginsenosides, on memory and cognitive dysfunction in db/db mice involve the inhibition of ER stress and the NLRP3 inflammasome pathway. Food & Function, 11, 4416–4427.

    Article  CAS  Google Scholar 

  6. Iriti, M., Vitalini, S., Fico, G., & Faoro, F. (2010). Neuroprotective herbs and foods from different traditional medicines and diets. Molecules, 15, 3517–3555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kim, W. Y., Kim, J. M., Han, S. B., Lee, S. K., Kim, N. D., Park, M. K., Kim, C. K., & Park, J. H. (2020). Steaming of ginseng at high temperature enhances biological activity. Journal of Natural Products, 63, 1702–1704.

    Article  Google Scholar 

  8. Bae, E. A., Han, M. J., Kim, E. J., & Kim, D. H. (2004). Transformation of ginseng saponins to ginsenoside rh2 by acids and human intestinal bacteria and biological activities of their transformants. Archives of Pharmacal Research, 27, 61–67.

    Article  CAS  PubMed  Google Scholar 

  9. Cui, C. H., Choi, T. E., Yu, H. S., Jin, F. X., Lee, S. T., Kim, S. C., & Im, W. T. (2011). Mucilaginibacter composti sp. Nov., with ginsenoside converting activity, isolated from compost. Journal of Microbiology, 49, 393–398.

    Article  CAS  PubMed  Google Scholar 

  10. Shin, K. C., Lee, H. J., & Oh, D. K. (2015). Substrate specificity of β-glucosidase from Gordonia terrae for ginsenosides and its application in the production of ginsenosides Rg3, Rg2, and Rh1 from ginseng root extract. Journal of Bioscience and Bioengineering, 119, 497–504.

    Article  CAS  PubMed  Google Scholar 

  11. Upadhyaya, J., Kim, M. J., Kim, Y. H., Ko, S. R., Park, H. W., & Kim, M. K. (2016). Enzymatic formation of compound-K from ginsenoside Rb1 by enzyme preparation from cultured mycelia of Armillaria mellea Journal of Ginseng Research, 40, 105–112.

    Article  PubMed  Google Scholar 

  12. Kim, M. J., Upadhyaya, J., Yoon, M. S., Ryu, N. S., Song, Y. E., Park, H. W., Kim, Y. H., & Kim, M. K. (2018). Highly regioselective biotransformation of ginsenoside Rb2 into compound Y and compound K by β-glycosidase purified from Armillaria mellea mycelia. Journal of Ginseng Research, 42, 504–511.

    Article  PubMed  Google Scholar 

  13. Cui, C. H., Jeon, B. M., Fu, Y., Im, W. T., & Kim, S. C. (2019). High-density immobilization of a ginsenoside-transforming beta-glucosidase for enhanced food-grade production of minor ginsenosides. Applied Microbiology and Biotechnology, 103, 7003–7015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shin, K. C., Oh, H. J., Kim, B. J., & Oh, D. K. (2013). Complete conversion of major protopanaxadiol ginsenosides to compound K by the combined use of α-L-arabinofuranosidase and β-galactosidase from Caldicellulosiruptor saccharolyticus and β-glucosidase from Sulfolobus acidocaldarius Journal of Biotechnology, 167, 33–40.

    Article  CAS  PubMed  Google Scholar 

  15. Shin, K. C., Choi, H. Y., Seo, M. J., & Oh, D. K. (2015). Compound K production from red ginseng extract by β-glycosidase from Sulfolobus solfataricus supplemented with α-L-arabinofuranosidase from Caldicellulosiruptor saccharolyticus. PLoS One, 10, e0145876.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ketudat Cairns, J. R., & Esen, A. (2010). β-glucosidases. Cellular and Molecular Life Sciences, 67, 3389–3405.

    Article  CAS  PubMed  Google Scholar 

  17. Zhu, H. R., Zhang, R., Huang, Z. V., & Zhou, J. P. (2023). Progress in the conversion of ginsenoside Rb1 into minor ginsenosides using β-glucosidases. Foods, 12(2), 397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhao, L. G., Xie, J. C., Zhang, X. S., Cao, F. L., & Pei, J. J. (2013). Overexpression and characterization of a glucose-tolerant β-glucosidase from Thermotoga thermarum DSM 5069T with high catalytic efficiency of ginsenoside Rb1 to Rd. Journal of Molecular Catalysis B: Enzymatic, 95, 62–69.

    Article  CAS  Google Scholar 

  19. Xie, J. C., Xu, H., Jiang, J. C., Zhang, N., Yang, J., Zhao, J., & Wei, M. (2020). Characterization of a novel thermostable glucose-tolerant GH1 β-glucosidase from the hyperthermophile Ignisphaera aggregans and its application in the efficient production of baohuoside I from icariin and total epimedium flavonoids. Bioorganic Chemistry, 104, 104296.

    Article  CAS  PubMed  Google Scholar 

  20. Febbraio, F., Ionata, E., & Marcolongo, L. (2020). Forty years of study on the thermostable β-glycosidase from S. solfataricus: Production, biochemical characterization and biotechnological applications. Biotechnology and Applied Biochemistry, 67, 602–618.

    Article  CAS  PubMed  Google Scholar 

  21. Nguyen, T. T. H., Kim, S. B., Kim, N. M., Kang, C., Chung, B., Park, J. S., & Kim, D. (2016). Production of steviol from steviol glucosides using β-glycosidase from Sulfolobus solfataricus Enzyme Microbial Technology, 93–94, 157–165.

    Article  PubMed  Google Scholar 

  22. Sun, X. J., Duan, X. G., Wu, D., Chen, J., & Wu, J. (2014). Characterization of Sulfolobus solfataricus β-galactosidase mutant F441Y expressed in Pichia pastoris Journal of Science of Food and Agriclture, 94, 1359–1365.

    Article  CAS  Google Scholar 

  23. Choi, J. H., Shin, K. C., & Oh, D. K. (2018). An L213A variant of β-glycosidase from Sulfolobus solfataricus with increased α-L-arabinofuranosidase activity converts ginsenoside Rc to compound K. PLoS One1, 13, e0191018.

    Article  Google Scholar 

  24. Pei, J. J., Xie, J. C., Yin, R., Zhao, L. G., Ding, G., Wang, Z. Z., & Xiao, W. (2015). Enzymatic transformation of ginsenoside Rb1 to ginsenoside 20 (S)-Rg3 by GH3 β-glucosidase from Thermotoga thermarum DSM 5069T Journal of Molecular Catalysis B: Enzymatic, 113, 104–109.

    Article  CAS  Google Scholar 

  25. Shin, K. C., Choi, H. Y., Seo, M. J., & Oh, D. K. (2017). Improved conversion of ginsenoside Rb 1 to compound K by semi-rational design of Sulfolobus solfataricus β-glycosidase. AMB Express, 7, 186.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Chen, D. L., Tong, X., Chen, S. W., Chen, S., Wu, D., Fang, S. G., Wu, J., & Chen, J. (2010). Heterologous expression and biochemical characterization of α-glucosidase from aspergillus niger by Pichia pastroris Journal of Agricultural and Food Chemistry, 58, 4819–4824.

    Article  CAS  PubMed  Google Scholar 

  27. Yang, H. Q., Liu, L., Shin, H. D., Chen, R. R., Li, J. H., Du, G. C., & Chen, J. (2013). Structure-based engineering of histidine residues in the catalytic domain of α-amylase from Bacillus subtilis for improved protein stability and catalytic efficiency under acidic conditions. Journal of Biotechnology, 164, 59–66.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang, W. L., Jia, M., Yu, S. H., Zhang, T., Zhou, L., Jiang, B., & Mu, W. M. (2016). Improving the thermostability and catalytic efficiency of the D-psicose 3-epimerase from Clostridium bolteae ATCC BAA-613 using site-directed mutagenesis. Journal of Agricultural and Food Chemistry, 64, 3386–3393.

    Article  CAS  PubMed  Google Scholar 

  29. Tao, X. M., Wang, T., Su, L. Q., & Wu, J. (2018). Enhanced 2-O-α-d-glucopyranosyl-l-ascorbic acid synthesis through iterative saturation mutagenesis of acceptor subsite residues in Bacillus stearothermophilus NO2 cyclodextrin glycosyltransferase. Journal of Agricultural and Food Chemistry, 66, 9052–9060.

    Article  CAS  PubMed  Google Scholar 

  30. Li, S., Yang, Q., & Tang, B. (2020). Improving the thermostability and acid resistance of Rhizopus oryzae α-amylase by using multiple sequence alignment based site‐directed mutagenesis. Biotechnology and Applied Biochemistry, 67, 677–684.

    Article  CAS  PubMed  Google Scholar 

  31. Dadheech, T., Jakhesara, S., Chauhan, P. S., Pandit, R., Hinsu, A., Kunjadiya, A., Rank, D., & Joshi, C. (2019). Draft genome analysis of lignocellulolytic enzymes producing aspergillus terreus with structural insight of β-glucosidases through molecular docking approach. International Journal of Biological Macromolecules, 125, 181–190.

    Article  CAS  PubMed  Google Scholar 

  32. Bhardwaj, V. K., & Purohit, R. (2020). Structural changes induced by substitution of amino acid 129 in the coat protein of Cucumber mosaic virus. Genomics, 112, 3729–3738.

    Article  CAS  PubMed  Google Scholar 

  33. Yu, H. R., & Huang, H. (2014). Engineering proteins for thermostability through rigidifying flexible sites. Biotechnology Advances, 32, 308–315.

    Article  CAS  PubMed  Google Scholar 

  34. Lv, K. M., Shao, W. Y., Pedroso, M. M., Peng, J. Y., Wu, B., Li, J. H., He, B. F., & Schenk, G. (2021). Enhancing the catalytic activity of a GH5 processive endoglucanase from Bacillus subtilis BS-5 by site-directed mutagenesis. International Journal of Biological Macromolecules, 168, 442–452.

    Article  CAS  PubMed  Google Scholar 

  35. Bhardwaj, V., & Purohit, R. (2020). Computational investigation on effect of mutations in PCNA resulting in structural perturbations and inhibition of mismatch repair pathway. Journal of Biomolecular Structure and Dynamics, 38, 1963–1974.

    Article  CAS  PubMed  Google Scholar 

  36. Feng, X. D., Tang, H., Han, B. J., Lv, B., & Li, C. (2016). Enhancing the thermostability of β-glucuronidase by rationally redesigning the catalytic domain based on sequence alignment strategy. Industrial & Engineering Chemistry Research, 55, 5474–5483.

    Article  CAS  Google Scholar 

  37. Subramanian, A., Kadirvel, P., & Anishetty, S. (2019). Insights into the pH-dependent catalytic mechanism of Sulfolobus solfataricus β-glycosidase: A molecular dynamics study. Carbohydrate Research, 480, 42–53.

    Article  CAS  PubMed  Google Scholar 

  38. Dehury, B., Behera, S. K., & Mahapatra, N. (2017). Structural dynamics of casein kinase I (CKI) from malarial parasite Plasmodium falciparum (isolate 3D7): Insights from theoretical modelling and molecular simulations. Journal of Molecular Graphics and Modelling, 71, 154–166.

    Article  CAS  PubMed  Google Scholar 

  39. Khaled, M., Gorfe, A. A., & Sayyed-Ahmad, A. (2019). Conformational and dynamical effects of Tyr32 phosphorylation in K-Ras: Molecular dynamics simulation and markov state models analysis. The Journal of Physical Chemistry B, 123(36), 7667–7675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang, X. L., Du, J. H., Zhao, B. C., Wang, H. Y., Rao, S. Q., Du, G. C., Zhou, J. W., Chen, J., & Liu, S. (2021). Significantly improving the thermostability and catalytic efficiency of Streptomyces mobaraenesis transglutaminase through combined rational design. Journal of Agricultural and Food Chemistry, 69, 15268–15278.

    Article  CAS  PubMed  Google Scholar 

  41. Chen, Z. W., Chen, J. J., Zhang, W. L., Zhang, T., Guang, C., & Mu, W. M. (2018). Improving thermostability and catalytic behavior of L-rhamnose isomerase from Caldicellulosiruptor obsidiansis OB47 toward D-allulose by site-directed mutagenesis. Journal of Agricultural and Food Chemistry, 66, 12017–12024.

    Article  CAS  PubMed  Google Scholar 

  42. Aguilar, C. F., Sanderson, I., Moracci, M., Ciaramella, M., Nucci, R., Rossi, M., & Pearl, L. H. (1997). Crystal structure of the β-glycosidase from the hyperthermophilic archeon Sulfolobus solfataricus: Resilience as a key factor in thermostability. Journal of Molecular Biology, 271, 789–802.

    Article  CAS  PubMed  Google Scholar 

  43. Jaafar, N. R., Ayob, S. N., Abd Rahman, N. H., Bakar, F. D. A., Murad, A. M. A., & Illias, R. M. (2021). Rational protein engineering of α-L-arabinofuranosidase from Aspergillus niger for improved catalytic hydrolysis efficiency on kenaf hemicellulose. Process Biochemistry, 102, 349–359.

    Article  CAS  Google Scholar 

  44. Moracci, M., La Volpe, A., Pulitzer, J. F., Rossi, M., & Ciaramella, M. (1992). Expression of the thermostable beta-galactosidase gene from the archaebacterium Sulfolobus solfataricus in Saccharomyces cerevisiae and characterization of a new inducible promoter for heterologous expression. Journal of Bacteriology, 174, 873–882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Duan, Z., Zhu, C., Shi, J., Fan, D. D., Deng, J., Fu, J., Huang, R. Z., & Fan, R. (2018). High efficiency production of ginsenoside compound K by catalyzing ginsenoside Rb1 using snailase. Chinese Journal of Chemical Engineering, 26(7), 1591–1597.

    Article  CAS  Google Scholar 

  46. Li, W., Zhang, X., Xue, Z., Mi, Y., Ma, P., & Fan, D. (2021). Ginsenoside CK production by commercial snailase immobilized onto carboxylated chitosan-coated magnetic nanoparticles. Biochemical Engineering Journal, 174, 108119.

    Article  CAS  Google Scholar 

  47. Tian, D., Wu, Z., Liu, X., Tu, Z., Li, R., Fan, D., & Lan, Y. (2023). Synthesis of L-aspartic acid-based bimetallic hybrid nanoflowers to immobilize snailase for the production of rare ginsenoside compound K. Journal of Materials Chemistry B, 11(11), 2397–2408.

    Article  CAS  PubMed  Google Scholar 

  48. Han, C., Li, W. G., Hua, C. Y., Sun, F. Q., Bi, P. S., & Wang, Q. Q. (2018). Enhancement of catalytic activity and thermostability of a thermostable cellobiohydrolase from Chaetomium thermophilum by site-directed mutagenesis. International Journal of Biological Macromolecules, 116, 691–697.

    Article  CAS  PubMed  Google Scholar 

  49. Ni, D. W., Zhang, S. Q., Krtel, O., Xu, W., Chen, Q. M., Oner, E. T., & Mu, W. M. (2021). Improving the thermostability and catalytic activity of an inulosucrase by rational engineering for the biosynthesis of microbial inulin. Journal of Agricultural and Food Chemistry, 69, 13125–13134.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by the National Key R&D Program of China (2021YFC2101500, 2019YFA0905200, 2021YFC2101000) and the National Natural Science Foundation of China (21706211, 22108229). The authors would like to thank all the reviewers who participated in the review and MJEditor (http://www.mjeditor.com) for its linguistic assistance during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

CF: the acquisition of data and study conduct, and writing original draft. WL: the study conception and design, and modified the manuscript. WS: review responses and revise. PW and LL: conceptualization, validation, project administration. YD and JH: reagents or analytical tools. DF: supervision, resources.

Corresponding authors

Correspondence to Weina Li or Daidi Fan.

Ethics declarations

Ethics Approval

This article does not contain any studies with animals or human participants.

Consent to Participate

The authors agreed to participate in this work.

Consent for Publication

The authors agreed to publish this work.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key Points

• N264D SS-βGly has improved Rd-hydrolyzing activity.

• MD simulation studies indicated that N264D mutation had no obvious effect on the enzyme structure.

• N264D mutation improved enzyme-substrate binding by 1.5 times according to binding free energy calculations.

• The engineered enzyme has a 1.9-fold higher catalytic efficiency for CK production.

Supplementary Information

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 12.4 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, C., Shen, W., Li, W. et al. Engineered β-glycosidase from Hyperthermophilic Sulfolobus solfataricus with Improved Rd-hydrolyzing Activity for Ginsenoside Compound K Production. Appl Biochem Biotechnol (2023). https://doi.org/10.1007/s12010-023-04745-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12010-023-04745-x

Keywords

Navigation