Skip to main content
Log in

Production of Gibberellic Acid by Solid-State Fermentation Using Wastes from Rice Processing and Brewing Industry

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Gibberellic acid (GA3) is a natural hormone present in some plants used in agricultural formulations as a growth regulator. Currently, its production on an industrial scale is performed by submerged fermentation using the fungus Gibberella fujikuroi, which is associated with low yields, leaving the purification stages with high costs. An alternative is solid-state fermentation (SSF), which makes it possible to obtain higher concentrations of product using low-cost substrates, such as agroindustrial by-products. This research investigated the use of raw rice bran (RRB) and barley malt residue (BMR) as substrates for GA3 production by the fungus Gibberella fujikuroi. Through two statistical designs, the effect of moisture (50 to 70 wt.%) and medium composition (RRB content between 30 and 70 wt.% to a mass ratio between RRB and BMR) was first evaluated. Using the best conditions previously obtained, the effect of adding glucose (carbon source, between 0 and 80 g·L−1) and ammonium nitrate—NH4NO3—(nitrogen source, between 0 and 5 g·L−1) on GA3 productivity was analyzed. The best yield was obtained using 30 wt.% RRB and 70 wt.% BMR for a medium with 70 wt.% of moisture after 7 days of process. It was also found that higher concentrations of NH4NO3 favor the GA3 formation for intermediate values of glucose content (40 g·L−1). Finally, a kinetic investigation showed an increasing behavior in the GA3 production (10.1 g·kg of substrate−1 was obtained), with a peak on the seventh day and subsequent tendency to stabilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article (and its supplementary information).

Abbreviations

ANOVA:

Analysis of variance

BMR:

Barley malt residue

CCRD:

Central composite rotational design

CV:

Coefficient of variation

GA3 :

Gibberellic acid

PDA:

Potato dextrose agar

RRB:

Raw rice bran

SSF:

Solid-state fermentation

SF:

Submerged fermentation

References

  1. Wang, H.-N., Ke, X., Jia, R., Huang, L.-G., Liu, Z.-Q., & Zheng, Y.-G. (2022). Multivariate modular metabolic engineering for enhanced gibberellic acid biosynthesis in Fusarium fujikuroi. Bioresource Technology, 364, 128033. https://doi.org/10.1016/j.biortech.2022.128033

    Article  CAS  PubMed  Google Scholar 

  2. Camara, M. C., Vandenberghe, L. P. S., Sextos, G. C., Tanobe, V. O. A., Magalhães Junior, A. I., & Soccol, C. R. (2020). Alternative methods for gibberellic acid production, recovery and formulation: A case study for product cost reduction. Bioresource Technology, 309, 123295. https://doi.org/10.1016/j.biortech.2020.123295

    Article  CAS  PubMed  Google Scholar 

  3. Ghimire, R., Yadav, P. K., Khanal, S., Shrestha, A. K., Devkota, A. R., & Shrestha, J. (2021). Effect of different levels of gibberellic acid and kinetin on quality and self-life of banana (Musa spp.) fruits. Heliyon, 7(9), e08019. https://doi.org/10.1016/j.heliyon.2021.e08019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gill, K., Kumar, P., Negi, S., Sharma, R., Joshi, A. K., Suprun, I. I., & Al-Nakib, E. A. (2023). Physiological perspective of plant growth regulators in flowering, fruit setting and ripening process in citrus. Scientia Horticulturae, 309, 111628. https://doi.org/10.1016/j.scienta.2022.111628

    Article  CAS  Google Scholar 

  5. Zhang, L., Sun, Y., Xu, Z., Zhang, W., Huang, G., Liu, F., & Chen, L. (2021). Insights into pH-dependent transformation of gibberellic acid in aqueous solution: Transformation pathway, mechanism and toxicity estimation. Journal of Environmental Sciences, 104, 1–10. https://doi.org/10.1016/j.jes.2020.11.009

    Article  CAS  Google Scholar 

  6. El-Sheikh, M. A., Rajaselvam, J., Abdel-Salam, E. M., Vijayaraghavan, P., Alatar, A. A., & DevadhasanBiji, G. (2020). Paecilomyces sp. ZB is a cell factory for the production of gibberellic acid using a cheap substrate in solid state fermentation. Saudi Journal of Biological Sciences, 27(9), 2431–2438. https://doi.org/10.1016/j.sjbs.2020.06.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Werle, L. B., Abaide, E. R., Felin, T. H., Kuhn, K. R., Tres, M. V., Zabot, G. L., & Mazutti, M. A. (2020). Gibberellic acid production from Gibberella fujikuroi using agro-industrial residues. Biocatalysis and Agricultural Biotechnology, 25, 101608. https://doi.org/10.1016/j.bcab.2020.101608

    Article  Google Scholar 

  8. Zhao, F., Zheng, M., & Xu, X. (2022). Microbial conversion of agro-processing waste (peanut meal) to rhamnolipid by Pseudomonas aeruginosa: Solid-state fermentation, water extraction, medium optimization and potential applications. Bioresource Technology, 128426. https://doi.org/10.1016/j.biortech.2022.128426

  9. Kupski, L., Cipolatti, E., Rocha, M. da, Oliveira, M. dos S., Souza-Soares, L. de A., & Badiale-Furlong, E. (2012). Solid-state fermentation for the enrichment and extraction of proteins and antioxidant compounds in rice bran by Rhizopus oryzae. Brazilian Archives of Biology and Technology, 55(6), 937–942. https://doi.org/10.1590/S1516-89132012000600018

  10. Yafetto, L. (2022). Application of solid-state fermentation by microbial biotechnology for bioprocessing of agro-industrial wastes from 1970 to 2020: A review and bibliometric analysis. Heliyon, 8(3), e09173. https://doi.org/10.1016/j.heliyon.2022.e09173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chilakamarry, C. R., Mimi Sakinah, A. M., Zularisam, A. W., Sirohi, R., Khilji, I. A., Ahmad, N., & Pandey, A. (2022). Advances in solid-state fermentation for bioconversion of agricultural wastes to value-added products: Opportunities and challenges. Bioresource Technology, 343, 126065. https://doi.org/10.1016/j.biortech.2021.126065

    Article  CAS  PubMed  Google Scholar 

  12. Liu, X., Dong, X., Chen, S., Yan, Y., He, J., Xu, J., & Xu, J. (2021). Enhancing erythritol production by wheat straw biochar-incorporated solid-state fermentation of agricultural wastes using defatted Schizochytrium sp biomass as supplementary feedstock. Industrial Crops and Products, 170, 113703. https://doi.org/10.1016/j.indcrop.2021.113703

    Article  CAS  Google Scholar 

  13. Mazhar, H., Ullah, I., Ali, U., Abbas, N., Hussain, Z., Ali, S. S., & Zhu, H. (2023). Optimization of low-cost solid-state fermentation media for the production of thermostable lipases using agro-industrial residues as substrate in culture of Bacillus amyloliquefaciens. Biocatalysis and Agricultural Biotechnology, 47, 102559. https://doi.org/10.1016/j.bcab.2022.102559

    Article  CAS  Google Scholar 

  14. Cano y Postigo, L. O., Jacobo-Velázquez, D. A., Guajardo-Flores, D., Garcia Amezquita, L. E., & García-Cayuela, T. (2021). Solid-state fermentation for enhancing the nutraceutical content of agrifood by-products: Recent advances and its industrial feasibility. Food Bioscience, 41, 100926. https://doi.org/10.1016/j.fbio.2021.100926

  15. Kumar, V., Ahluwalia, V., Saran, S., Kumar, J., Patel, A. K., & Singhania, R. R. (2021). Recent developments on solid-state fermentation for production of microbial secondary metabolites: Challenges and solutions. Bioresource Technology, 323, 124566. https://doi.org/10.1016/j.biortech.2020.124566

    Article  CAS  PubMed  Google Scholar 

  16. Ramos, R. (2022). USDA estima produção de arroz do Brasil em 10,44 mi de t em casca para 2022/23. Safras & Mercado. Retrieved from https://safras.com.br/usda-estima-producao-de-arroz-do-brasil-em-1044-mi-de-t-em-casca-para-2022-23/

  17. Gul, K., Yousuf, B., Singh, A. K., Singh, P., & Wani, A. A. (2015). Rice bran: Nutritional values and its emerging potential for development of functional food—A review. Bioactive Carbohydrates and Dietary Fibre, 6(1), 24–30. https://doi.org/10.1016/j.bcdf.2015.06.002

    Article  CAS  Google Scholar 

  18. SINDICERV - Brazilian Union of the Beer Industry. (2022). The Brazilian beer sector in numbers. Retrieved from https://www.sindicerv.com.br/o-setor-em-numeros/

  19. MacLeod, L., & Evans, E. (2016). Barley: Malting. In Encyclopedia of food grains (pp. 423–433). Elsevier. https://doi.org/10.1016/B978-0-12-394437-5.00153-4

  20. Association of Official Analytical Chemists (AOAC). (2000). Official methods of analysis of AOAC International: Agricultural chemicals, contaminants and drugs. (W. Horwitz, Ed.) (17th ed.). Gaithersburg: AOAC International.

  21. Zhang, L., Wang, S.-Q., Li, X.-J., Zhang, A.-L., Zhang, Q., & Gao, J.-M. (2012). New insight into the stereochemistry of botryosphaeridione from a Phoma endophyte. Journal of Molecular Structure, 1016, 72–75. https://doi.org/10.1016/j.molstruc.2012.02.041

    Article  ADS  CAS  Google Scholar 

  22. Klaic, R., Sallet, D., Foletto, E. L., Jacques, R. J. S., Guedes, J. V. C., Kuhn, R. C., & Mazutti, M. A. (2017). Optimization of solid-state fermentation for bioherbicide production by Phoma sp. Brazilian Journal of Chemical Engineering, 34(2), 377–384. https://doi.org/10.1590/0104-6632.20170342s20150613

    Article  CAS  Google Scholar 

  23. Rodrigues, C., Vandenberghe, L. P. de S., Teodoro, J., Oss, J. F., Pandey, A., & Soccol, C. R. (2009). A new alternative to produce gibberellic acid by solid state fermentation. Brazilian Archives of Biology and Technology, 52(spe), 181–188. https://doi.org/10.1590/S1516-89132009000700023

  24. Camara, M. C., Vandenberghe, L. P. S., Rodrigues, C., de Oliveira, J., Faulds, C., Bertrand, E., & Soccol, C. R. (2018). Current advances in gibberellic acid (GA3) production, patented technologies and potential applications. Planta, 248(5), 1049–1062. https://doi.org/10.1007/s00425-018-2959-x

    Article  CAS  PubMed  Google Scholar 

  25. Berrios, J., Pyle, D. L., & Aroca, G. (2010). Gibberellic acid extraction from aqueous solutions and fermentation broths by using emulsion liquid membranes. Journal of Membrane Science, 348(1–2), 91–98. https://doi.org/10.1016/j.memsci.2009.10.040

    Article  CAS  Google Scholar 

  26. Bhosale, S., & Vijayalakshmi, D. (2015). Processing and nutritional composition of rice bran. Current Research in Nutrition and Food Science, 3(1), 74–80. https://doi.org/10.12944/CRNFSJ.3.1.08

    Article  Google Scholar 

  27. Sharma, H. R., Chauhan, G. S., & Agrawal, K. (2004). Physico-chemical characteristics of rice bran processed by dry heating and extrusion cooking. International Journal of Food Properties, 7(3), 603–614. https://doi.org/10.1081/JFP-200033047

    Article  CAS  Google Scholar 

  28. Zhuang, X., Yin, T., Han, W., & Zhang, X. (2019). Nutritional ingredients and active compositions of defatted rice bran. In Rice bran and rice bran oil: Chemistry, processing and utilization (pp. 247–270). Elsevier Inc. https://doi.org/10.1016/B978-0-12-812828-2.00010-X

  29. Olivares-Galván, S., Marina, M. L., & García, M. C. (2022). Extraction of valuable compounds from brewing residues: Malt rootlets, spent hops, and spent yeast. Trends in Food Science and Technology, 127(May), 181–197. https://doi.org/10.1016/j.tifs.2022.06.002

    Article  CAS  Google Scholar 

  30. Trevizan, J. A. C., Bido, G. de S., Ferrari, A., & Felipe, D. F. (2021). Nutritional composition of malted barley residue from brewery. Journal of Management and Sustainability, 11(1), 27–34. https://doi.org/10.5539/jms.v11n1p27

  31. Balcerek, M., Pielech-Przybylska, K., Dziekońska-Kubczak, U., Patelski, P., & Strak, E. (2016). Fermentation results and chemical composition of agricultural distillates obtained from rye and barley grains and the corresponding malts as a source of amylolytic enzymes and starch. Molecules, 21(10), 1320–1339. https://doi.org/10.3390/molecules21101320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. da Silva, L. R. I., de Andrade, C. J., de Oliveira, D., & Lerin, L. A. (2021). Solid-state fermentation in brewer’s spent grains by Fusarium fujikuroi for gibberellic acid production. Biointerface Research in Applied Chemistry, 11(5), 13042–13052.

    Article  Google Scholar 

  33. Gelmi, C., Pérez-Correa, R., & Agosin, E. (2002). Modelling Gibberella fujikuroi growth and GA3 production in solid-state fermentation. Process Biochemistry, 37(9), 1033–1040. https://doi.org/10.1016/S0032-9592(01)00314-4

    Article  CAS  Google Scholar 

  34. Corona, A., Sáez, D., & Agosin, E. (2005). Effect of water activity on gibberellic acid production by Gibberella fujikuroi under solid-state fermentation conditions. Process Biochemistry, 40(8), 2655–2658. https://doi.org/10.1016/j.procbio.2004.11.008

    Article  CAS  Google Scholar 

  35. Carboué, Q., Rébufa, C., Hamrouni, R., Roussos, S., & Bombarda, I. (2020). Statistical approach to evaluate effect of temperature and moisture content on the production of antioxidant naphtho-gamma-pyrones and hydroxycinnamic acids by Aspergillus tubingensis in solid-state fermentation. Bioprocess and Biosystems Engineering, 43(12), 2283–2294. https://doi.org/10.1007/s00449-020-02413-6

    Article  CAS  PubMed  Google Scholar 

  36. Otálvaro, Á. M., Gutiérrez, G. D., Pierotty, D. A., Parada, F. A., & Algecira, N. A. (2008). Gibberellic acid production by Gibberella fujikuroi under solid-state fermentation of cassava bagasse and rice hull. Journal of Biotechnology, 136, S371. https://doi.org/10.1016/j.jbiotec.2008.07.853

    Article  Google Scholar 

  37. de Oliveira, J., Rodrigues, C., Vandenberghe, L. P. S., Câmara, M. C., Libardi, N., & Soccol, C. R. (2017). Gibberellic acid production by different fermentation systems using citric pulp as substrate/support. BioMed Research International, 2017, 1–8. https://doi.org/10.1155/2017/5191046

    Article  CAS  Google Scholar 

  38. Rodrigues, C., Vandenberghe, L. P. de S., de Oliveira, J., & Soccol, C. R. (2012). New perspectives of gibberellic acid production: A review. Critical Reviews in Biotechnology, 32(3), 263–273.https://doi.org/10.3109/07388551.2011.615297

  39. Kalkanci, A., Kadioglu, A., Wilson, D., & Jacobsen, M. D. (2011). Gene expression in fungi. IMA Fungus, 2(1), 29–32. https://doi.org/10.5598/imafungus.2011.02.01.05

    Article  PubMed  Google Scholar 

  40. Cruz-Juárez, G., Maldonado Blanco, M. G., & Jackson, M. A. (2019). Nutritional impact on the biomass yield of Hirsutella citriformis and sporulation on inorganic substrates. Biocontrol Science and Technology, 29(9), 827–839. https://doi.org/10.1080/09583157.2019.1608508

    Article  Google Scholar 

  41. Machado, C. M. M., Oishi, B. O., Pandey, A., & Soccol, C. R. (2004). Kinetics of Gibberella fujikuroi growth and gibberellic acid production by solid-state fermentation in a packed-bed column bioreactor. Biotechnology Progress, 20(5), 1449–1453. https://doi.org/10.1021/bp049819x

    Article  CAS  PubMed  Google Scholar 

  42. Machado, C. M. M., Soccol, C. R., De Oliveira, B. H., & Pandey, A. (2002). Gibberellic acid production by solid-state fermentation in coffee husk. Applied Biochemistry and Biotechnology, 102–103(1–6), 179–192. https://doi.org/10.1385/ABAB:102-103:1-6:179

    Article  Google Scholar 

  43. Bandelier, S., Renaud, R., & Durand, A. (1997). Production of gibberellic acid by fed-batch solid state fermentation in an aseptic pilot-scale reactor. Process Biochemistry, 32(2), 141–145. https://doi.org/10.1016/S0032-9592(96)00063-5

    Article  CAS  Google Scholar 

  44. Rangaswamy, V. (2012). Improved production of gibberellic acid by Fusarium moniliforme. Journal of Microbiology Research, 2(3), 51–55. https://doi.org/10.5923/j.microbiology.20120203.02

    Article  Google Scholar 

Download references

Funding

The authors thank CNPq (National Council of Technological and Scientific Development) for the financial support of this work, as well as CAPES (Coordination for the Improvement of Higher Education Personnel) and the Human Resources Program of the Brazilian Agency for Petroleum, Natural Gas and Biofuels—PRH/ANP through the Human Resources Training Program for Petroleum and Biofuels Processing for scholarships.

Author information

Authors and Affiliations

Authors

Contributions

Upiragibe V. Pinheiro: conceptualization, writing (original draft). João H. C. Wancura: writing (original draft), methodology, formal analysis. Michel Brondani: writing (review and editing), methodology. Camila M. da Silva: investigation, validation. Marco A. Mainardi: investigation, validation. Rafaela M. Gai: writing (review and editing), resources. Sérgio L. Jahn: conceptualization, supervision, project administration.

Corresponding author

Correspondence to João H. C. Wancura.

Ethics declarations

Ethics Approval

This is an observational study where no ethical approval is required.

Consent to Participate

Informed consent was obtained from all individual participants included in the study.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 215 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinheiro, U.V., Wancura, J.H.C., Brondani, M. et al. Production of Gibberellic Acid by Solid-State Fermentation Using Wastes from Rice Processing and Brewing Industry. Appl Biochem Biotechnol 196, 1493–1508 (2024). https://doi.org/10.1007/s12010-023-04637-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04637-0

Keywords

Navigation