Skip to main content

Advertisement

Log in

An Overview of Bacteria-Mediated Heavy Metal Bioremediation Strategies

  • Review Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Contamination-free groundwater is considered a good source of potable water. Even in the twenty-first century, over 90 percent of the population is reliant on groundwater resources for their lives. Groundwater influences the economical state, industrial development, ecological system, and agricultural and global health conditions worldwide. However, different natural and artificial processes are gradually polluting groundwater and drinking water systems throughout the world. Toxic metalloids are one of the major sources that pollute the water system. In this review work, we have collected and analyzed information on metal-resistant bacteria along with their genetic information and remediation mechanisms of twenty different metal ions [arsenic (As), mercury (Hg), lead (Pb), chromium (Cr), iron (Fe), copper (Cu), cadmium (Cd), palladium (Pd), zinc (Zn), cobalt (Co), antimony (Sb), gold (Au), silver (Ag), platinum (Pt), selenium (Se), manganese (Mn), molybdenum (Mo), nickel (Ni), tungsten (W), and uranium (U)]. We have surveyed the scientific information available on bacteria-mediated bioremediation of various metals and presented the data with responsible genes and proteins that contribute to bioremediation, bioaccumulation, and biosorption mechanisms. Knowledge of the genes responsible and self-defense mechanisms of diverse metal-resistance bacteria would help us to engineer processes involving multi-metal-resistant bacteria that may reduce metal toxicity in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

TDS:

Total dissolved solids

TSS:

Total suspended solids

CBHI:

Central Bureau of Health Intelligence

MIH:

Ministry of Health

DCC:

N,N′-dicyclohexylcarbodiimide

DNP:

2,4-Dinitrophenol

MIC:

Minimum inhibitory concentration

IARC:

International Agency for the Research on Cancer

References

  1. Fienen, M. N., & Arshad, M. (2016). The international scale of the groundwater issue. In A. J. Jakeman, O. Barreteau, R. J. Hunt, J. D. Rinaudo, & A. Ross (Eds.), Integrated groundwater management. Springer.

    Google Scholar 

  2. Edokpayi, J. N., Rogawski, E. T., Kahler, D. M., Hill, C. L., Reynolds, C., Nyathi, E., Smith, J. A., Odiyo, J. O., Samie, A., Bessong, P., & Dillingham, R. (2018). Challenges to sustainable safe drinking water: A case study of water quality and use across seasons in rural communities in Limpopo province, South Africa. Water, 10, 159.

    Article  PubMed  PubMed Central  Google Scholar 

  3. USGS Science for a changing world. (2015). Water use. US: USGS Water Science School. https://www.usgs.gov/special-topic/water-science-school/science. Accessed 23 May 2022.

  4. Margat, J., & van der Gun, J. (2013). Groundwater around the world: A geographic synopsis (1st ed.). London.

    Book  Google Scholar 

  5. Jinwal, U. K., Abisambra, J. F., Zhang, J., Dharia, S., O’Leary, J. C., Patel, T., Braswell, K., Jani, T., Gestwicki, J. E., & Dickey, C. A. (2012). Cdc37/Hsp90 protein complex disruption triggers an autophagic clearance cascade for TDP-43 protein. Journal of Biological Chemistry, 287(29), 24814–24820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fernández-Luqueño, F., López-Valdez, F., Gamero-Melo, P., Suárez, S. L., Aguilera-González, E. N., Martínez, A. I., Guillermo, M. S. G., Hernández-Martínez, G., Herrera-Mendoza, R., Garz, M. A. Á., & Pérez-Velázquez, I. R. (2013). Heavy metal pollution in drinking water - A global risk for human health: A review. African Journal of Environmental Science and Technology, 7(7), 567–584.

    Google Scholar 

  7. Vetrimurugan, E., Brindha, K., Elango, L., & Ndwandwe, O. M. (2017). Human exposure risk to heavy metals through groundwater used for drinking in an intensively irrigated river delta. Springer Applied Water Science, 7, 3267–3280.

    Article  ADS  CAS  Google Scholar 

  8. Jamir, T. T., Devi, W. B., Singh, U. I., & Singh, R. K. B. (2011). Lead, iron and manganese contamination in spring, pond and well water in Nagaland, one of the Seven North-Eastern states of India: A future danger. Journal of Chemical and Pharmaceutical Research, 3(3), 403–411.

    CAS  Google Scholar 

  9. Khlifi, R., & Hamza-Chaffai, A. (2010). Head and neck cancer due to heavy metal exposure via tobacco smoking and professional exposure: A review. Toxicology and Applied Pharmacology, 248, 71–88.

    Article  CAS  PubMed  Google Scholar 

  10. Flora, S. J. S., Saxena, G., Gautam, P., Kaur, P., & Gill, K. D. (2007). Lead induced oxidative stress and alterations in biogenic amines in different rat brain regions and their response to combined administration of DMSA and MiADMSA. Chemico-Biological Interactions, 170, 209–220.

    Article  CAS  PubMed  Google Scholar 

  11. Hawkes, J. S. (1997). What is “heavy metal.” Journal of Chemical Education, 74, 1374.

    Article  ADS  CAS  Google Scholar 

  12. Priyalaxmi, R., Murugan, A., Raja, P., & Raj, K. D. (2014). Bioremediation of cadmium by Bacillus safensis (JX126862), a marine bacterium isolated from mangrove sediments. International Journal of Current Microbiology and Applied Sciences, 3(12), 326–335.

    Google Scholar 

  13. Wuana, R. A., & Okieimen, F. E. (2011). Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecology, 2011, 402647.

    Article  Google Scholar 

  14. Briffa, J., Sinagra, E., & Blundell, R. (2020). Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon, 6(9), e04691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kumar, C. (2017). Contaminated water kills 1 every 4 hours. The Times of India. webpage: https://timesofindia.indiatimes.com/city/bengaluru/contaminated-water-kills-1-every-4-hours/articleshow/62286683.cms. Accessed 23 May 2022.

  16. Roy, N. A., Bak, J. H., Akrami, A., Brody, C. D., & Pillow, J. W. (2018). Efficient inference for time-varying behavior during learning. Advances in Neural Information Processing Systems, 31, 5696–5706.

    Google Scholar 

  17. Tarfeen, N., Nisa, K. I., Hamid, B., Bashir, Z., Yatoo, A. M., Dar, M. A., Mohiddin, F. A., Amin, Z., Ahmad, R. A., & Sayyed, R. Z. (2022). Microbial remediation: A promising tool for reclamation of contaminated sites with special emphasis on heavy metal and pesticide pollution: A review. Processes, 10, 1358.

    Article  CAS  Google Scholar 

  18. Lahiri, D., Nag, M., Dey, A., Sarkar, T., Joshi, S., Pandit, S., Das, A. P., Pati, S., Pattanaik, S., Tilak, V. K., & Ray, R. R. (2022). Biofilm mediated degradation of petroleum products. Geomicrobiology Journal, 39(3–5), 389–398.

    Article  CAS  Google Scholar 

  19. Ianeva, O. D. (2009). Mechanisms of bacteria resistance to heavy metals. Mikrobiolohichnyĭ zhurnal, 71(6), 54–65.

    CAS  PubMed  Google Scholar 

  20. Megharaj, M., Venkateswarlu, K., & Naidu, R. (2014). Bioremediation. In P. Wexler (Ed.), Encyclopedia of Toxicology (3rd ed., pp. 485–489). Academic Press. https://doi.org/10.1016/B978-0-12-386454-3.01001-0

  21. Sonawdekar, S. (2012). Bioremediation: a boon to hydrocarbon degradation. International Journal of Environmental Sciences, 2, 2408–2424.

    CAS  Google Scholar 

  22. Hlihor, R. M., Apostol, L. C., & Gavrilescu, M. (2017). Environmental bioremediation by biosorption and bioaccumulation: principles and applications. In N. Anjum, S. Gill, & N. Tuteja (Eds.), Enhancing cleanup of environmental pollutants. Springer.

    Google Scholar 

  23. Azubuike, C. C., Chikere, C., B., & Okpokwasili, G., C.  (2016). Bioremediation techniques classification based on site of application: principles, advantages, limitations and prospects. World Journal of Microbiology and Biotechnology,  32(11), 180. https://doi.org/10.1007/s11274-016-2137-x

  24. Dias, R. L., Ruberto, L., Calabro, A., Balbo, A. L., Del Panno, M. T., & Mac Cormack, W. P. (2015). Hydrocarbon removal and bacterial community structure in on-site biostimulated biopile systems designed for bioremediation of diesel-contaminated Antarctic soil. Polar Biol, 38, 677–687.

    Article  Google Scholar 

  25. Gomez, F., & Sartaj, M. (2014). Optimization of field scale biopiles for bioremediation of petroleum hydrocarbon contaminated soil at low temperature conditions by response surface methodology (RSM). International Biodeterioration and Biodegradation, 89, 103–109.

    Article  CAS  Google Scholar 

  26. Whelan, M. J., Coulon, F., Hince, G., Rayner, J., McWatters, R., Spedding, T., & Snape, I. (2015). Fate and transport of petroleum hydrocarbons in engineered biopiles in polar regions. Chemosphere, 131, 232–240.

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Chemlal, R., Abdi, N., Lounici, H., Drouiche, N., Pauss, A., & Mameri, N. (2013). Modeling and qualitative study of diesel biodegradation using biopile process in sandy soil. International Biodeterioration and Biodegradation, 78, 43–48.

    Article  CAS  Google Scholar 

  28. Akbari, A., & Ghoshal, S. (2014). Pilot-scale bioremediation of a petroleum hydrocarbon-contaminated clayey soil from a sub-Arctic site. Journal of Hazardous Materials, 280, 595–602.

    Article  CAS  PubMed  Google Scholar 

  29. Aislabie, J., Saul, D. J., & Foght, J. M. (2006). Bioremediation of hydrocarbon-contaminated polar soils. Extremophiles, 10, 171–179.

    Article  CAS  PubMed  Google Scholar 

  30. Sanscartier, D., Zeeb, B., Koch, I., & Reimer, K. (2009). Bioremediation of diesel-contaminated soil by heated and humidified biopile system in cold climates. Cold Regions Science and Technology, 55, 167–173.

    Article  Google Scholar 

  31. Barr, D. (2002). Biological methods for assessment and remediation of contaminated land: Case studies. Construction Industry Research and Information Association.

    Google Scholar 

  32. Coulon, F., Al Awadi, M., Cowie, W., Mardlin, D., Pollard, S., Cunningham, C., Risdon, G., Arthur, P., Semple, K. T., & Paton, G. I. (2010). When is soil remediated? Comparison of biopiled and windrowed soils contaminated with bunker-fuel in a full-scale trial. Environmental Pollution, 158, 3032–3040.

    Article  CAS  PubMed  Google Scholar 

  33. Hobson, A. M., Frederickson, J., & Dise, N. B. (2005). CH4 and N2O from mechanically turned windrow and vermicomposting systems following in-vessel pre-treatment. Waste Management, 25, 345–352.

    Article  CAS  PubMed  Google Scholar 

  34. Philp, J. C., & Atlas, R. M. (2005). Bioremediation of contaminated soils and aquifers. In R. M. Atlas & J. C. Philp (Eds.), Bioremediation: applied microbial solutions for real-world environmental cleanup (pp. 139–236). American Society for Microbiology (ASM) Press.

    Google Scholar 

  35. Höhener, P., & Ponsin, V. (2014). In situ vadose zone bioremediation. Current Opinion in Biotechnology, 27, 1–7.

    Article  PubMed  Google Scholar 

  36. Gidarakos, E., & Aivalioti, M. (2007). Large scale and long term application of bioslurping: The case of a Greek petroleum refinery site. Journal of Hazardous Materials, 149, 574–581.

    Article  CAS  PubMed  Google Scholar 

  37. Meagher, R. B. (2000). Phytoremediation of toxic elemental organic pollutants. Current Opinion in Plant Biology, 3, 153–162.

    Article  CAS  PubMed  Google Scholar 

  38. Kuiper, I., Lagendijk, E. L., Bloemberg, G. V., & Lugtenberg, B. J. J. (2004). Rhizoremediation: a beneficial plant-microbe interaction. Molecular Plant-Microbe Interactions, 7, 6–15.

    Article  Google Scholar 

  39. Igiri, B. E., Okoduwa, S. I. R., Idoko, G. O., Akabuogu, E. P., Adeyi, A. O., & Ejiogu, I. K. (2018). Toxicity and bioremediation of heavy metals contaminated ecosystem from tannery wastewater: a review. J Toxicol, 2018, 2568038.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Saha, R. P., Samanta, S., Patra, S., Sarkar, D., Saha, A., & Singh, M. K. (2017). Metal homeostasis in bacteria: the role of ArsR–SmtB family of transcriptional repressors in combating varying metal concentrations in the environment. BioMetals, 30(4), 459–503.

    Article  CAS  PubMed  Google Scholar 

  41. Banerjee, A., Tabassum, S. K., Debnath, D., Hazra, D., & Pal, R. (2022). A review on detoxification and bioremediation of antimony by bacterial species. Acta Scientific Microbiology, 5(9), 56–72.

    Article  Google Scholar 

  42. Sun, W., Sun, X., Häggblom, M. M., Kolton, M., Lan, L., Li, B., Dong, Y., Xu, R., & Li, F. (2021). Identification of antimonate reducing bacteria and their potential metabolic traits by the combination of stable isotope probing and metagenomic-pangenomic analysis. Environmental Science and Technology, 55(20), 13902–13912.

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Mateos, L. M., Ordóñez, E., Letek, M., & Gil, J. A. (2006). Corynebacterium glutamicum as a model bacterium for the bioremediation of arsenic. International Microbiology, 9(3), 207–215.

    CAS  PubMed  Google Scholar 

  44. Ojuederie, O. B., & Babalola, O. O. (2017). Microbial and plant-assisted bioremediation of heavy metal polluted environments: a review. International Journal of Environmental Research and Public Health, 14(12), 1504.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Verma, S., & Kuila, A. (2019). Bioremediation of heavy metals by microbial process. Environmental Technology & Innovation, 14, 100369.

    Article  Google Scholar 

  46. Crupper, S. S., Worrell, V., Stewart, G. C., & Iandolo, J. J. (1999). Cloning and expression of cadD, a new cadmium resistance gene of Staphylococcus aureus. Journal of Bacteriology, 181(13), 4071–4075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Das, S., Dash, H. R., & Chakraborty, J. (2016). Genetic basis and importance of metal resistant genes in bacteria for bioremediation of contaminated environments with toxic metal pollutants. Applied Microbiology and Biotechnology, 100(7), 2967–2984.

    Article  CAS  PubMed  Google Scholar 

  48. Cheung, K., & Gu, J. (2007). Mechanism of hexavalent chromium detoxification by microorganisms and bioremediation application potential: A review. International Biodeterioration & Biodegradation, 59(1), 8–15.

    Article  CAS  Google Scholar 

  49. Dulay, H., Tabares, M., Kashefi, K., & Reguera, G. (2020). Cobalt resistance via detoxification and mineralization in the iron-reducing bacterium Geobacter sulfurreducens. Frontiers in Microbiology, 11, 600463.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Wang, L., Yan, L., Ye, L., Chen, J., Li, Y., Zhang, Q., & Jing, C. (2022). Identification and Characterization of a Au(III) Reductase from Erwinia sp. IMH. JACS Au, 2(6), 1435–1442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Choi, M. H., Jeong, S. W., Shim, H. E., Yun, S. J., Mushtaq, S., Choi, D. S., Jang, B. S., Yang, J. E., Choi, Y. J., & Jeon, J. (2017). Efficient bioremediation of radioactive iodine using biogenic gold nanomaterial-containing radiation-resistant bacterium, Deinococcus radiodurans R1. Chemical Communications (Cambridge, England), 53(28), 3937–3940.

    Article  CAS  PubMed  Google Scholar 

  52. Bradley, J. M., Svistunenko, D. A., Wilson, M. T., Hemmings, A. M., Moore, G. R., & Le Brun, N. E. (2020). Bacterial iron detoxification at the molecular level. Journal of Biological Chemistry, 295(51), 17602–17623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Barboza, N. R., Guerra-Sá, R., & Leão, V. A. (2016). Mechanisms of manganese bioremediation by microbes: An overview. Journal of Chemical Technology and Biotechnology, 91, 2733–2739.

    Article  CAS  Google Scholar 

  54. Purkan, P., Nurmalyya, S., & Hadi, S. (2016). Resistance level of Pseudomonas stutzeri against mercury and its ability in production of mercury reductase enzyme. Molekul, 11(2), 230–238.

    Article  CAS  Google Scholar 

  55. Figueiredo, N. L., Canário, J., O’Driscoll, N. J., Duarte, A., & Carvalho, C. (2016). Aerobic mercury-resistant bacteria alter mercury speciation and retention in the Tagus Estuary (Portugal). Ecotoxicology and Environmental Safety, 124, 60–67.

    Article  CAS  PubMed  Google Scholar 

  56. Yakasai, H. M., Rahman, M. F., Manogaran, M., Yasid, N. A., Syed, M. A., Shamaan, N. A., & Shukor, M. Y. (2021). Microbiological reduction of molybdenum to molybdenum blue as a sustainable remediation tool for molybdenum: A comprehensive review. International Journal of Environmental Research and Public Health, 18(11), 5731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Malunga, K. B., & Chirwa, E. M. N. (2019). Recovery of Palladium (II) by biodeposition using a pure culture and a mixed culture. Chemical Engineering Transactions, 74, 1519–1524.

    Google Scholar 

  58. Capeness, M. J., Edmundson, M. C., & Horsfall, L. E. (2015). Nickel and platinum group metal nanoparticle production by Desulfovibrio alaskensis G20. New Biotechnology, 32(6), 727–731.

    Article  CAS  PubMed  Google Scholar 

  59. Eswayah, A. S., Smith, T. J., & Gardiner, P. H. (2016). Microbial transformations of selenium species of relevance to bioremediation. Applied and Environment Microbiology, 82(16), 4848–4859.

    Article  ADS  CAS  Google Scholar 

  60. Silver, S. (2003). Bacterial silver resistance: Molecular biology and uses and misuses of silver compounds. FEMS Microbiology Reviews, 27(2–3), 341–353.

    Article  CAS  PubMed  Google Scholar 

  61. Lin, I.W.-S., Lok, C.-N., & Che, C.-M. (2014). Biosynthesis of silver nanoparticles from silver(I) reduction by the periplasmic nitrate reductase c-type cytochrome subunit NapC in a silver-resistant E. coli. Chemical Science, 5, 3144–3150.

    Article  CAS  Google Scholar 

  62. Shanware, A. S., & Phadtare, P. (2014). Tungsten toxicity in soil and biological role of tungsten in bacteria. Indian Journal of Science, 10(24), 2014.

    Google Scholar 

  63. Kletzin, A., & Adams, M. W. (1996). Tungsten in biological systems. FEMS Microbiology Reviews, 18(1), 5–63.

    Article  CAS  PubMed  Google Scholar 

  64. You, W., Peng, W., Tian, Z., & Zheng, M. (2021). Uranium bioremediation with U(VI)-reducing bacteria. Science of the Total Environment, 798, 149107.

    Article  ADS  CAS  PubMed  Google Scholar 

  65. Newsome, L., Morris, K., & Lloyd, J. R. (2014). The biogeochemistry and bioremediation of uranium and other priority radionuclides. Chemical Geology, 363, 164–184.

    Article  ADS  CAS  Google Scholar 

  66. Choudhury, R., & Srivastava, S. (2001). Zinc resistance mechanisms in bacteria. Current Science, 81(7), 768–775.

    CAS  Google Scholar 

  67. Luo, S., Xiao, X., Xi, Q., Wan, Y., Chen, L., Zeng, G., Liu, C., Guo, H., & Chen, J. (2011). Enhancement of cadmium bioremediation by endophytic bacterium Bacillus sp. L14 using industrially used metabolic inhibitors (DCC or DNP). Journal of Hazardous Materials, 190(1–3), 1079–1082.

    Article  CAS  PubMed  Google Scholar 

  68. Loni, P. C., Wu, M., Wang, W., Wang, H., Ma, L., Liu, C., Song, Y., & Tuovinen, H. O. (2020). Mechanism of microbial dissolution and oxidation of antimony in stibnite under ambient conditions. J Hazard Mater, 385, 121561.

    Article  CAS  PubMed  Google Scholar 

  69. Das, P., Sinha, S., & Mukherjee, S. K. (2014). Nickel bioremediation potential of Bacillus thuringiensis KUNi1 and some environmental factors in nickel removal. Bioremediation Journal, 18(2), 169–177.

    Article  CAS  Google Scholar 

  70. Shukor, M. Y., Rahman, M. F., Suhaili, Z., Shamaan, N. A., & Syed, M. A. (2009). Bacterial reduction of hexavalent molybdenum to molybdenum blue. World Journal of Microbiology & Biotechnology, 25, 1225–1234.

    Article  CAS  Google Scholar 

  71. Satyapal, G. K., Mishra, S. K., Srivastava, A., Ranjan, R. K., Prakash, K., Haque, R., & Kumar, N. (2018). Possible bioremediation of arsenic toxicity by isolating indigenous bacteria from the middle Gangetic plain of Bihar, India. Biotechnology Reports (Amsterdam, Netherlands), 17, 117–125.

    PubMed  Google Scholar 

  72. Palanivel, T. M., Sivakumar, N., Al-Ansari, A., & Victor, R. (2020). Bioremediation of copper by active cells of Pseudomonas stutzeri LA3 isolated from an abandoned copper mine soil. Journal of Environmental Management, 253, 109706.

    Article  CAS  PubMed  Google Scholar 

  73. Guo, H., Luo, S., Chen, L., Xiao, X., Xi, Q., Wei, W., Zeng, G., Liu, C., Wan, Y., Chen, J., & He, Y. (2010). Bioremediation of heavy metals by growing hyperaccumulaor endophytic bacterium Bacillus sp. L14. Bioresource Technology, 101(22), 8599–8605.

    Article  CAS  PubMed  Google Scholar 

  74. Lengke, M. F., Fleet, M. E., & Southam, G. (2006). Bioaccumulation of gold by filamentous cyanobacteria between 25 and 200°C. Geomicrobiology Journal, 23(8), 591–597.

    Article  CAS  Google Scholar 

  75. de Vargas, I., Macaskie, L. E., & Guibal, E. (2004). Biosorption of palladium and platinum by sulfate-reducing bacteria. Journal of Chemical Technology and Biotechnology, 79, 49–56.

    Article  Google Scholar 

  76. Blindauer, C. A., Harrison, M. D., Robinson, A. K., Parkinson, J. A., Bowness, P. W., Sadler, P. J., & Robinson, N. J. (2002). Multiple bacteria encode metallothioneins and SmtA-like zinc fingers. Molecular Microbiology, 45(5), 1421–1432.

    Article  CAS  PubMed  Google Scholar 

  77. Ewart, D. K., & Hughes, M. N. (1991). The extraction of metals from ores using bacteria. Advances in Inorganic Chemistry, 36, 103–135.

    Article  CAS  Google Scholar 

  78. Bahar, M. M., Megharaj, M., & Naidu, R. (2012). Arsenic bioremediation potential of a new arsenite-oxidizing bacterium Stenotrophomonas sp MM-7 isolated from soil. Biodegradation, 23(6), 803–12.

    Article  CAS  PubMed  Google Scholar 

  79. Tan, L. C., Nancharaiah, Y. V., van Hullebusch, E. D., & Lens, P. N. L. (2016). Selenium: Environmental significance, pollution, and biological treatment technologies. Biotechnology Advances, 34(5), 886–907.

    Article  CAS  PubMed  Google Scholar 

  80. Li, J., Wang, Q., Zhang, S., Qin, D., & Wang, G. (2013). Phylogenetic and genome analyses of antimony-oxidizing bacteria isolated from antimony mined soil. International biodeterioration & biodegradation, 76, 76–80.

    Article  CAS  Google Scholar 

  81. Sun, W., Xiao, E., Dong, Y., Tang, S., Krumins, V., Ning, Z., Sun, M., Zhao, Y., Wu, S., & Xiao, T. (2016). Profiling microbial community in a watershed heavily contaminated by an active antimony (Sb) mine in Southwest China. Science of the Total Environment, 550, 297–308.

    Article  ADS  CAS  PubMed  Google Scholar 

  82. Nguyen, V. K., Choi, W., Yu, J., & Lee, T.-H. (2017). Microbial oxidation of antimonite and arsenite by bacteria isolated from antimony-contaminated soils. International Journal of Hydrogen Energy, 42(45), 27832–27842.

    Article  CAS  Google Scholar 

  83. Gu, J., Sunahara, G., Duran, R., Yao, J., Cui, Y., Tang, C., Li, H., & Mihucz, V. G. (2019). Sb(III)-resistance mechanisms of a novel bacterium from non-ferrous metal tailings. Ecotoxicology and Environmental Safety, 186, 109773.

    Article  CAS  PubMed  Google Scholar 

  84. Nguyen, V. K., Park, Y., & Lee, T. (2019). Microbial antimonate reduction with a solid-state electrode as the sole electron donor: A novel approach for antimony bioremediation. Journal of Hazardous Materials, 377, 179–185.

    Article  CAS  PubMed  Google Scholar 

  85. Sun, X., Li, B., Han, F., Xiao, E., Wang, Q., Xiao, T., & Sun, W. (2019). Vegetation type impacts microbial interaction with antimony contaminants in a mining-contaminated soil environment. Environmental Pollution, 252(Pt B), 1872–1881.

    Article  CAS  PubMed  Google Scholar 

  86. Wu, B., Wang, Z., Zhao, Y., Gu, Y., Wang, Y., Yu, J., & Xu, H. (2019). The performance of biochar-microbe multiple biochemical material on bioremediation and soil micro-ecology in the cadmium aged soil. Science of the Total Environment, 686, 719–728.

    Article  ADS  CAS  PubMed  Google Scholar 

  87. Lovley, D. R., & Coates, J. D. (1997). Bioremediation of metal contamination. Current Opinion in Biotechnology, 8(3), 285–289.

    Article  CAS  PubMed  Google Scholar 

  88. Páez-Espino, D., Tamames, J., de Lorenzo, V., & Cánovas, D. (2009). Microbial responses to environmental arsenic. BioMetals, 22(1), 117–130.

    Article  PubMed  Google Scholar 

  89. Banerjee, S., Datta, S., Chattyopadhyay, D., & Sarkar, P. (2011). Arsenic accumulating and transforming bacteria isolated from contaminated soil for potential use in bioremediation. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 46(14), 1736–1747.

    CAS  Google Scholar 

  90. Kumari, N., Rana, A., & Jagadevan, S. (2019). Arsenite biotransformation by Rhodococcus sp.: Characterization, optimization using response surface methodology and mechanistic studies. Science of the Total Environment, 687, 577–589.

    Article  ADS  CAS  PubMed  Google Scholar 

  91. Ali Khan, M. W., & Ahmad, M. (2006). Detoxification and bioremediation potential of a Pseudomonas fluorescens isolate against the major Indian water pollutants. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 41(4), 659–674.

    Google Scholar 

  92. Ike, A., Sriprang, R., Ono, H., Murooka, Y., & Yamashita, M. (2007). Bioremediation of cadmium contaminated soil using symbiosis between leguminous plant and recombinant rhizobia with the MTL4 and the PCS genes. Chemosphere, 66(9), 1670–1676.

    Article  ADS  CAS  PubMed  Google Scholar 

  93. Juwarkar, A. A., Nair, A., Dubey, K. V., Singh, S. K., & Devotta, S. (2007). Biosurfactant technology for remediation of cadmium and lead contaminated soils. Chemosphere, 68(10), 1996–2002.

    Article  ADS  CAS  PubMed  Google Scholar 

  94. Bai, H. J., Zhang, Z. M., Yang, G. E., & Li, B. Z. (2008). Bioremediation of cadmium by growing Rhodobacter sphaeroides: Kinetic characteristic and mechanism studies. Bioresource Technology, 99(16), 7716–7722.

    Article  CAS  PubMed  Google Scholar 

  95. Rajbanshi, A. (2009). Study on heavy metal resistant bacteria in Guheswori sewage treatment plant. Our Nature, 6(1), 52–57.

    Article  Google Scholar 

  96. Rani, A., Souche, Y. S., & Goel, R. (2009). Comparative assessment of in situ bioremediation potential of cadmium resistant acidophilic Pseudomonas putida 62BN and alkalophilic Pseudomonas monteilli 97AN strains on soybean. International Biodeterioration & Biodegradation, 63(1), 62–66.

    Article  CAS  Google Scholar 

  97. Sinha, S., & Mukherjee, S. K. (2009). Pseudomonas aeruginosa KUCD1, a possible candidate for cadmium bioremediation. Brazilian Journal of Microbiology, 40(3), 655–662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Zahoor, A., & Rehman, A. (2009). Isolation of Cr(VI) reducing bacteria from industrial effluents and their potential use in bioremediation of chromium containing wastewater. Journal of Environmental Sciences (China), 21(6), 814–820.

    Article  PubMed  Google Scholar 

  99. Siripornadulsil, S., & Siripornadulsil, W. (2013). Cadmium-tolerant bacteria reduce the uptake of cadmium in rice: Potential for microbial bioremediation. Ecotoxicology and Environmental Safety, 94, 94–103.

    Article  CAS  PubMed  Google Scholar 

  100. Sen, S. K., Raut, S., Dora, T. K., & Mohapatra, P. K. (2014). Contribution of hot spring bacterial consortium in cadmium and lead bioremediation through quadratic programming model. Journal of Hazardous Materials, 265, 47–60.

    Article  CAS  PubMed  Google Scholar 

  101. Kumar, M., Kumar, V., Varma, A., Prasad, R., Sharma, A. K., Pal, A., Arshi, A., & Singh, J. (2016). An efficient approach towards the bioremediation of copper, cobalt and nickel contaminated field samples. Journal of Soils and Sediments, 16(8), 2118–2127.

    Article  CAS  Google Scholar 

  102. Shen, Y., Zhu, W., Li, H., Ho, S. H., Chen, J., Xie, Y., & Shi, X. (2018). Enhancing cadmium bioremediation by a complex of water-hyacinth derived pellets immobilized with Chlorella sp. Bioresource Technology, 257, 157–163.

    Article  CAS  PubMed  Google Scholar 

  103. Massoud, R., Hadiani, M. R., Hamzehlou, P., & Khosravi-Darani, K. (2019). Bioremediation of heavy metals in food industry: Application of Saccharomyces cerevisiae. Electronic Journal of Biotechnology, 37, 56–60.

    Article  CAS  Google Scholar 

  104. Ma, H., Wei, M., Wang, Z., Hou, S., Li, X., & Xu, H. (2020). Bioremediation of cadmium polluted soil using a novel cadmium immobilizing plant growth promotion strain Bacillus sp. TZ5 loaded on biochar. Journal of Hazardous Materials, 388, 122065.

    Article  CAS  PubMed  Google Scholar 

  105. Shi, Z., Zhang, Z., Yuan, M., Wang, S., Yang, M., Yao, Q., Ba, W., Zhao, J., & Xie, B. (2020). Characterization of a high cadmium accumulating soil bacterium, Cupriavidus sp. WS2. Chemosphere, 247, 125834.

    Article  CAS  PubMed  Google Scholar 

  106. Akhtar, M. S., Chali, B., & Azam, T. (2013). Bioremediation of arsenic and lead by plants and microbes from contaminated soil. Research in Plant Sciences, 1(3), 68–73.

    Google Scholar 

  107. Krumholz, L. R., Elias, D. A., & Suflita, J. M. (2003). Immobilization of cobalt by sulfate-reducing bacteria in subsurface sediments. Geomicrobiology Journal, 20(1), 61–72.

    Article  CAS  Google Scholar 

  108. Hau, H. H., Gilbert, A., Coursolle, D., & Gralnick, J. A. (2008). Mechanism and consequences of anaerobic respiration of cobalt by Shewanella oneidensis strain MR-1. Applied and Environment Microbiology, 74(22), 6880–6886.

    Article  ADS  CAS  Google Scholar 

  109. Tajer-Mohammad-Ghazvini, P., Kasra-Kermanshahi, R., Nozad-Golikand, A., Sadeghizadeh, M., Ghorbanzadeh-Mashkani, S., & Dabbagh, R. (2016). Cobalt separation by Alphaproteobacterium MTB-KTN90: Magnetotactic bacteria in bioremediation. Bioprocess and Biosystems Engineering, 39(12), 1899–1911.

    Article  CAS  PubMed  Google Scholar 

  110. Shakibaie, M. R., Khosravan, A., Frahmand, A., & Zare, S. (2008). Application of metal resistant bacteria by mutational enhancment technique for bioremediation of copper and zinc from industrial wastes. Iran Journal of Environmental Health Science and Engineering, 5(4), 251–256.

    CAS  Google Scholar 

  111. Sun, L. N., Zhang, Y. F., He, L. Y., Chen, Z. J., Wang, Q. Y., Qian, M., & Sheng, X. F. (2010). Genetic diversity and characterization of heavy metal-resistant-endophytic bacteria from two copper-tolerant plant species on copper mine wasteland. Bioresource Technology, 101(2), 501–509.

    Article  CAS  PubMed  Google Scholar 

  112. Ghosh, A., & Saha, P. D. (2013). Optimization of copper bioremediation by Stenotrophomonas maltophilia PD2. Journal of Environmental Chemical Engineering, 1(3), 159–163.

    Article  CAS  Google Scholar 

  113. Islam, F., Yasmeen, T., Ali, Q., Mubin, M., Ali, S., Arif, M. S., Hussain, S., Riaz, M., & Abbas, F. (2016). Copper-resistant bacteria reduces oxidative stress and uptake of copper in lentil plants: Potential for bacterial bioremediation. Environmental Science and Pollution Research International, 23(1), 220–233.

    Article  CAS  PubMed  Google Scholar 

  114. Cornu, J. Y., Huguenot, D., Jézéquel, K., Lollier, M., & Lebeau, T. (2017). Bioremediation of copper-contaminated soils by bacteria. World Journal of Microbiology & Biotechnology, 33(2), 26.

    Article  Google Scholar 

  115. Reith, F., Etschmann, B., Grosse, C., Moors, H., Benotmane, M. A., Monsieurs, P., Grass, G., Doonan, C., Vogt, S., Lai, B., Martinez-Criado, G., George, G. N., Nies, D. H., Mergeay, M., Pring, A., Southam, G., & Brugger, J. (2009). Mechanisms of gold biomineralization in the bacterium Cupriavidus metallidurans. Proceedings of the National Academy of Sciences, 106(42), 17757–17762.

    Article  ADS  CAS  Google Scholar 

  116. Fashola, M. O., Ngole-Jeme, V. M., & Babalola, O. O. (2016). Heavy metal pollution from gold mines: Environmental effects and bacterial strategies for resistance. International Journal of Environmental Research and Public Health, 13(11), 1047.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Rea, M. A., Zammit, C. M., & Reith, F. (2016). Bacterial biofilms on gold grains-implications for geomicrobial transformations of gold. FEMS Microbiology Ecology, 92(6), fiw082.

    Article  PubMed  Google Scholar 

  118. Barkay, T., & Schaefer, J. (2001). Metal and radionuclide bioremediation: Issues, considerations and potentials. Current Opinion in Microbiology, 4(3), 318–323.

    Article  CAS  PubMed  Google Scholar 

  119. Gadd, G. M. (2004). Microbial influence on metal mobility and application for bioremediation. Geoderma, 122(2–4), 109–119.

    Article  ADS  CAS  Google Scholar 

  120. Chen, W. B. (2011). The study of bioremediation on heavy metal of cultured seawater by Sphingomonas sp. XJ2 Immobilized Sphingomonas Strain. Advanced Materials Research, 347–353, 1436–1441. https://doi.org/10.4028/www.scientific.net/amr.347-353.1436

    Article  Google Scholar 

  121. Naik, M. M., & Dubey, S. K. (2013). Lead resistant bacteria: Lead resistance mechanisms, their applications in lead bioremediation and biomonitoring. Ecotoxicology and Environmental Safety, 98, 1–7.

    Article  CAS  PubMed  Google Scholar 

  122. Gupta, M. K., Kumari, K., Shrivastava, A., & Gauri, S. (2014). Bioremediation of heavy metal polluted environment using resistant bacteria. Journal of Environmental Research and Development, 8(4), 883–889.

    Google Scholar 

  123. Coelho, L. M., Rezende, H. C., Coelho, L. M., de Sousa, P. A. R., Melo, D. F. O., & Coelho, N. M. M. (2015). Bioremediation of polluted waters using microorganisms. Advances in Bioremediation of Wastewater and Polluted Soil. https://doi.org/10.5772/60770

    Article  Google Scholar 

  124. Nascimento, A. M., & Chartone-Souza, E. (2003). Operon mer: bacterial resistance to mercury and potential for bioremediation of contaminated environments. Genetics and Molecular Research, 2(1), 92–101.

    PubMed  Google Scholar 

  125. Wagner-Döbler, I. (2003). Pilot plant for bioremediation of mercury-containing industrial wastewater. Applied Microbiology and Biotechnology, 62(2–3), 124–133.

    Article  PubMed  Google Scholar 

  126. Shukor, M. Y., Rahman, M. F., Suhaili, Z., Shamann, N. A., & Syed, M. A. (2010). Hexavalent molybdenum reduction to Mo-blue by Acinetobacter calcoaceticus. Folia Microbiologica, 55, 137–143.

    Article  CAS  PubMed  Google Scholar 

  127. Baxter-Plant, V. S., Mikheenko, I. P., & Macaskie, L. E. (2003). Sulphate-reducing bacteria, palladium and the reductive dehalogenation of chlorinated aromatic compounds. Biodegradation, 14(2), 83–90.

    Article  CAS  PubMed  Google Scholar 

  128. Lesniewska, B. A., Messerschmidt, J., Jakubowski, N., & Hulanicki, A. (2004). Bioaccumulation of platinum group elements and characterization of their species in Lolium multiflorum by size-exclusion chromatography coupled with ICP-MS. Science of the Total Environment, 322(1–3), 95–108.

    Article  ADS  CAS  PubMed  Google Scholar 

  129. Zimmermann, S., Messerschmidt, J., von Bohlen, A., & Sures, B. (2005). Uptake and bioaccumulation of platinum group metals (Pd, Pt, Rh) from automobile catalytic converter materials by the zebra mussel (Dreissena polymorpha). Environmental Research, 98(2), 203–209.

    Article  ADS  CAS  PubMed  Google Scholar 

  130. Pollmann, K., Raff, J., Merroun, M., Fahmy, K., & Selenska-Pobell, S. (2006). Metal binding by bacteria from uranium mining waste piles and its technological applications. Biotechnology Advances, 24(1), 58–68.

    Article  CAS  PubMed  Google Scholar 

  131. Hennebel, T., Van Nevel, S., Verschuere, S., De Corte, S., De Gusseme, B., Cuvelier, C., Fitts, J. P., van der Lelie, D., Boon, N., & Verstraete, W. (2011). Palladium nanoparticles produced by fermentatively cultivated bacteria as catalyst for diatrizoate removal with biogenic hydrogen. Applied Microbiology and Biotechnology, 91(5), 1435–1445.

    Article  CAS  PubMed  Google Scholar 

  132. Veltz, I., Arsac, F., Biagianti-Risbourg, S., Habets, F., Lechenault, H., & Vernet, G. (1996). Effects of platinum (Pt4+) on Lumbriculus variegatus Müller (Annelida, Oligochaetae): acute toxicity and bioaccumulation. Archives of Environmental Contamination and Toxicology, 31(1), 63–67.

    Article  CAS  PubMed  Google Scholar 

  133. Losi, M. E., & Frankenberger, W. T. (1997). Reduction of selenium oxyanions by Enterobacter cloacae SLD1a-1: isolation and growth of the bacterium and its expulsion of selenium particles. Applied and Environment Microbiology, 63(8), 3079–3084.

    Article  ADS  CAS  Google Scholar 

  134. Bledsoe, T. L., Cantafio, A. W., & Macy, J. M. (1999). Fermented whey-an inexpensive feed source for a laboratory-scale selenium-bioremediation reactor system inoculated with Thauera selenatis. Applied Microbiology and Biotechnology, 51(5), 682–685.

    Article  CAS  PubMed  Google Scholar 

  135. Kashiwa, M., Nishimoto, S., Takahashi, K., Ike, M., & Fujita, M. (2000). Factors affecting soluble selenium removal by a selenate-reducing bacterium Bacillus sp. SF-1. Journal of Bioscience and Bioengineering, 89(6), 528–533.

    Article  CAS  PubMed  Google Scholar 

  136. Ranjard, L., Prigent-Combaret, C., Nazaret, S., & Cournoyer, B. (2002). Methylation of inorganic and organic selenium by the bacterial thiopurine methyltransferase. Journal of Bacteriology, 184(11), 3146–3149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Siddique, T., Zhang, Y., Okeke, B. C., & Frankenberger, W. T., Jr. (2006). Characterization of sediment bacteria involved in selenium reduction. Bioresource Technology, 97(8), 1041–1049.

    Article  CAS  PubMed  Google Scholar 

  138. Charley, R. C., & Bull, A. T. (1979). Bioaccumulation of silver by a multispecies community of bacteria. Archives of Microbiology, 123(3), 239–244.

    Article  CAS  PubMed  Google Scholar 

  139. Slawson, R. M., Lee, H., & Trevors, J. T. (1990). Bacterial interactions with silver. Biology of Metals, 3(3–4), 151–154.

    Article  CAS  PubMed  Google Scholar 

  140. Ibrahim, Z., Ahmad, W. A., & Baba, A. B. (2001). Bioaccumulation of silver and the isolation of metal-binding protein from P. diminuta. Brazilian Archives of Biology and Technology, 44(3), 223–225.

    Article  CAS  Google Scholar 

  141. Ganorkar, R., Jadeja, N. B., Shanware, A., & Ingle, A. B. (2022). Characterisation of novel microbial strains Proteus mirabilis and Bordetella avium for heavy metal bioremediation and dye degradation. Archives of Microbiology, 204(5), 262.

    Article  CAS  PubMed  Google Scholar 

  142. Radhika, V., Subramanian, S., & Natarajan, K. A. (2006). Bioremediation of zinc using Desulfotomaculum nigrificans: Bioprecipitation and characterization studies. Water Research, 40(19), 3628–3636.

    Article  CAS  PubMed  Google Scholar 

  143. Natarajan, K. A. (2008). Microbial aspects of acid mine drainage and its bioremediation. Transactions of Nonferrous Metals Society of China, 18(6), 1352–1360.

    Article  CAS  Google Scholar 

  144. Biondo, R., da Silva, F. A., Vicente, E. J., Souza Sarkis, J. E., & Schenberg, A. C. (2012). Synthetic phytochelatin surface display in Cupriavidus metallidurans CH34 for enhanced metals bioremediation. Environmental Science and Technology, 46(15), 8325–8332.

    Article  ADS  CAS  PubMed  Google Scholar 

  145. Peng, W., Li, X., Song, J., Jiang, W., Liu, Y., & Fan, W. (2018). Bioremediation of cadmium- and zinc-contaminated soil using Rhodobacter sphaeroides. Chemosphere, 197, 33–41.

    Article  ADS  CAS  PubMed  Google Scholar 

  146. Tumanyan, A. F., Seliverstova, A. P., & Zaitseva, N. A. (2020). Effect of heavy metals on ecosystems. Chemistry and Technology of Fuels and Oils, 56, 390–394.

    Article  CAS  Google Scholar 

  147. Ashraf, R., & Ali, T. A. (2007). Effect of heavy metals on soil microbial community and mung beans seed germination. Pakistan Journals of Botany, 39(2), 629–636.

    Google Scholar 

  148. Bhattacharyya, P., Chakrabarti, K., Chakraborty, A., Tripathy, S., & Powell, M. A. (2008). Fractionation and bioavailability of Pb in municipal solid waste compost and Pb uptake by rice straw and grain under the submerged condition in amended soil. Geosciences Journal, 12(1), 41–45.

    Article  ADS  CAS  Google Scholar 

  149. Jordao, C. P., Nascentes, C. C., Cecon, P. R., Fontes, R. L. F., & Pereira, J. L. (2006). Heavy metal availability in soil amended with composted urban solid wastes. Environmental Monitoring and Assessment, 112, 309–326.

    Article  CAS  PubMed  Google Scholar 

  150. Singh, J. (2011). Effects of heavy metals on soil, plants, human health and aquatic life. International Journal of Research in Chemistry and Environment, 1(2), 15–21.

    Google Scholar 

  151. Hinojosa, M. B., Carreira, J. A., Ruız, R. G., & Dick, R. P. (2004). Soil moisture pre-treatment effects on enzyme activities as indicators of heavy metal contaminated and reclaimed soils. Soil Biology & Biochemistry, 36, 1559–1568.

    Article  CAS  Google Scholar 

  152. Yao, H., Xu, J., & Huang, C. (2003). Substrate utilization pattern, biomass and activity of microbial communities in a sequence of heavy metalpolluted paddy soils. Geoderma, 115, 139–148.

    Article  ADS  CAS  Google Scholar 

  153. Speira, T. W., Kettlesb, H. A., Percivalc, H. J., & Parshotam, A. (1999). Is soil acidification the cause of biochemical responses when soils are amended with heavy metal salts? Soil Biology and Biochemistry, 31, 1953–1961.

    Article  Google Scholar 

  154. Shun-hong, H., Bing, P., Zhi-hui, Y., Li-yuan, C., & Li-cheng, Z. (2009). Chromium accumulation, microorganism population and enzyme activities in soils around chromium-containing slag heap of steel alloy factory. Transactions of Nonferrous Metals Society of China, 19, 241–248.

    Article  Google Scholar 

  155. Mora, A. P., Calvo, J. J. O., Cabrera, F., & Madejon, E. (2005). Changes in enzyme activities and microbial biomass after ‘“in situ”’ remediation of a heavy metal-contaminated soil. Applied Soil Ecology, 28, 125–137.

    Article  Google Scholar 

  156. Wang, Y. P., Shi, J. Y., Wang, H., Li, Q., Chen, X. C., & Chen, Y. X. (2007). The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelters. Ecotoxicology and Environmental Safety, 67, 75–81.

    Article  CAS  PubMed  Google Scholar 

  157. Garrido, S., Campo, G. M. D., Esteller, M. V., Vaca, R., & Lugo, J. (2002). Heavy metals in soil treated with sewage sludge composting, their effect on yield and uptake of broad bean seeds (Vicia faba L.). Water, Air, and Soil Pollution, 166, 303–319.

    Article  ADS  Google Scholar 

  158. Rascio, N., & Izzo, F. N. (2011). Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting? Plant Science, 180, 169–181.

    Article  CAS  PubMed  Google Scholar 

  159. Sharma, R. K., Agrawal, M., & Marshall, F. (2007). Heavy metal contamination of soil and vegetables in suburban areas of Varanasi, India. Ecotoxicology and Environmental Safety, 66, 258–266.

    Article  CAS  Google Scholar 

  160. Guala, S. D., Vega, F. A., & Covelo, E. F. (2010). The dynamics of heavy metals in plant–soil interactions. Ecological Modelling, 221, 1148–1152.

    Article  CAS  Google Scholar 

  161. Woo, S., Yum, S., Park, H. S., Lee, T. K., & Ryu, J. C. (2009). Effects of heavy metals on antioxidants and stress-responsive gene expression in Javanese medaka (Oryzias javanicus). Comparative Biochemistry and Physiology, Part C, 149, 289–299.

    PubMed  Google Scholar 

  162. Ayandiran, T. A., Fawole, O. O., Adewoye, S. O., & Ogundiran, M. A. (2009). Bioconcentration of metals in the body muscle and gut of Clarias gariepinus exposed to sublethal concentrations of soap and detergent effluent. Journal of Cell and Animal Biology, 3(8), 113–118.

    CAS  Google Scholar 

  163. Peng, K., Luo, C., Luo, L., Li, X., & Shena, Z. (2008). Bioaccumulation of heavy metals by the aquatic plants Potamogeton pectinatus L. and Potamogeton malaianus Miq. and their potential use for contamination indicators and in wastewater treatment. Scince of the Total Environment, 392, 22–29.

    Article  ADS  CAS  Google Scholar 

  164. Gurrieri, J. T. (1998). Distribution of metals in water and sediment and effects on aquatic biota in the upper Stillwater River basin, Montana. Journal of Geochemical Exploration, 64, 83–100.

    Article  CAS  Google Scholar 

  165. Soliman, Z. I. (2006). A study of heavy metals pollution in some aquatic organisms in Suez Canal in port-said harbour. Journal of Applied Sciences Research, 2(10), 657–663.

    Google Scholar 

  166. Iwasaki, Y., Kagaya, T., Miyamoto, K., & Matsuda, H. (2002). Environmental effects of heavy metals on riverine benthic macroinvertebrate assemblages with reference to potential food availability for drift-feeding fishes. Toxicology and Chemistry, 28(2), 354–363.

    Article  Google Scholar 

  167. Abernathy, C. O., Liu, Y. P., Longfellow, D., Aposhian, H. V., Beck, B., Fowler, B., Goyer, R., Menzer, R., Rossman, T., Thompson, C., & Waalkes, R. (1999). Arsenic: health effects, mechanisms of actions and research issues. Environmental Health Perspectives, 107, 593–597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Caserta, D., Graziano, A., Monte, G. L., Bordi, G., & Moscarini, M. (2013). Heavy metals and placental fetal-maternal barrier: A mini-review on the major concerns. European Review for Medical and Pharmacological Sciences, 17, 2198–2206.

    CAS  PubMed  Google Scholar 

  169. Lenntech Company Websites Lenntech BV, Delfgauw. (1998–2019). Water treatment solutions. The Netherlands. https://www.lenntech.com/periodic/elements/cr.htm. Accessed 23 May 2022.

  170. Smith, A. H., Lingas, E. O., & Rahman, M. (2000). Contamination of drinking-water by arsenic in Bangladesh: A public health emergency. Bulletin of the World Health Organization, 78(9), 1093–1103.

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Mazumder, G. (2008). Chronic arsenic toxicity & human health. Indian Journal of Medical Research, 128(4), 436–447.

    Google Scholar 

  172. Bernard, A. (2008). Cadmium & its adverse effects on human health. Indian Journal of Medical Research, 128(4), 557–564.

    CAS  PubMed  Google Scholar 

  173. Nelson, R. L. (1992). Dietary iron and colorectal cancer risk. Free Radical Biology & Medicine, 12(2), 161–168.

    Article  CAS  Google Scholar 

  174. Bhasin, G., Kauser, H., & Athar, M. (2002). Iron augments stage-I and stage-II tumour promotion in murine skin. Cancer Letters, 183(2), 113–122.

    Article  CAS  PubMed  Google Scholar 

  175. Martin, S., & Griswold, W. (2009). Human health effects of heavy metals. Environmental Science and Technology Briefs for Citizens, 15, 1–6.

    Google Scholar 

  176. Papanikolaou, N. C., Hatzidaki, E. G., Belivanis, S., Tzanakakis, G. N., & Tsatsakis, A. M. (2005). Lead toxicity update. A brief review. Medical Science Monitor, 11(10), RA329.

    CAS  PubMed  Google Scholar 

  177. Taylor, M. P., Winder, C., & Lanphear, B. P. (2012). Eliminating childhood lead toxicity in Australia: a call to lower the intervention level. MJA, 197(9), 493.

    PubMed  Google Scholar 

  178. Teo, J., Goh, K., Ahuja, A., Ng, H., & Poon, W. (1997). Intracranial vascular calcifications, glioblastoma multiforme, and lead poisoning. AJNR, 18, 576–579.

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Alina, M., Azrina, A., Mohd Yunus, A. S., Mohd Zakiuddin, S., Mohd Izuan Effendi, H., & Muhammad Rizal, R. (2012). Heavy metals (mercury, arsenic, cadmium, platinum) in selected marine fish and shellfish along the straits of Malacca. International Food Research Journal, 19(1), 135–140.

    CAS  Google Scholar 

  180. Agency for Toxic Substances and Disease Registry (ATSDR). (2013). Toxicological profile for uranium. Atlanta: U.S. Department of Health and Human Services, Public Health Service. Website: https://www.atsdr.cdc.gov/phs/phs.asp?id=438&tid=77. Accessed 23 May 2022.

  181. Plum, L. M., Rink, L., & Haase, H. (2010). The essential toxin: impact of zinc on human health. International Journal of Environmental Research and Public Health, 7(4), 1342–1365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2014). Heavy metals toxicity and the environment. EXS, 101, 133–164.

    Google Scholar 

  183. Banu, R. J., & Subramanian, L. (2001). Biomanagement of paper mill sludge using anindigenous (Lampito mauritii) and two exotic (Eudrilus eugineae and Eisenia fetida) earthworms. Journal of Environmental Biology, 22(3), 181–185.

    CAS  PubMed  Google Scholar 

  184. Patrick, L. (2002). Mercury toxicity and antioxidants: part 1: role of glutathione and alpha-lipoic acid in the treatment of mercury toxicity. Alternative Medicine Review, 7(6), 456–471.

    PubMed  Google Scholar 

  185. Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B., & Beeregowda, K. N. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology, 7(2), 60–72.

    Article  PubMed  PubMed Central  Google Scholar 

  186. Albretsen, J. (2006). The toxicity of iron, an essential element. Veterinary Medicine, 101, 82–90.

  187. Stohs, S. J., & Bagchi, D. (1995). Oxidative mechanisms in the toxicity of metal ions. Free Radical Biology & Medicine, 18(2), 321–336.

    Article  CAS  Google Scholar 

  188. Grazuleviciene, R., Nadisauskiene, R., Buinauskiene, J., & Grazulevicius, T. (2009). Effects of elevated levels of manganese and iron in drinking water on birth outcomes. Polish Journal of Environmental Studies, 18(5), 819–825.

    CAS  Google Scholar 

  189. Kaul, B., Sandhu, R. S., Depratt, C., & Reyes, F. (1999). Follow-up screening of lead-poisoned children near an auto battery recycling plant, Haina, Dominican Republic. Environmental Health Perspectives, 107(11), 917–920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Bechara, E. J., Medeiros, M. H., Monteiro, H. P., Hermes-Lima, M., Pereira, B., & Demasi, M. (1993). A free radical hypothesis of lead poisoning and inborn porphyrias associated with 5-aminolevulinic acid overload. Quimica Nova, 16, 385–392.

    CAS  Google Scholar 

  191. Waalkes, M. P., Hiwan, B. A., Ward, J. M., Devor, D. E., & Goyer, R. A. (1995). Renal tubular tumors and a typical hepper plasics in B6C3F, mice exposed to lead acetate during gestation and lactation occur with minimal chronic nephropathy. Cancer Research, 55, 5265–5271.

    CAS  PubMed  Google Scholar 

  192. Yang, J. L., Wang, L. C., Chamg, C. Y., & Liu, T. Y. (1999). Singlet oxygen is the major species participating in the induction of DNA strand breakage and 8-hydrocy-deoxyguanosine adduct by lead acetate. Environmental and Molecular Mutagenesis, 33, 194–201.

    Article  CAS  PubMed  Google Scholar 

  193. Mathew, B. B., Tiwari, A., & Jatawa, S. K. (2011). Free radicals and antioxidants: A review. Journal of Pharmacy Research, 4(12), 4340–4343.

    Google Scholar 

  194. Wadhwa, N., Mathew, B. B., Jatawa, S., & Tiwari, A. (2012). Lipid peroxidation: Mechanism, models and significance. International Journal of Current Science, 3, 29–38.

    Google Scholar 

  195. Valko, M. M. H. C. M., Morris, H., & Cronin, M. T. D. (2005). Metals, toxicity and oxidative stress. Current Medicinal Chemistry, 12(10), 1161–1208.

    Article  CAS  PubMed  Google Scholar 

  196. Lash, L. H., Putt, D. A., Hueni, S. E., Payton, S. G., & Zwicki, J. (2007). Interactive toxicity of inorganic mercury and trichloroethylene in rat and human proximal tubules (Effects of apoptosis, necrosis, and glutathione status). Toxicology and Applied Pharmacology, 221(3), 349–362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Lund, B. O., Miller, D. M., & Woods, J. S. (1991). Mercury induced H2O2 formation and lipid peroxidation in vitro in rat kidney mitochondria. Biochemical Pharmacology, 42, S181–S187.

    Article  CAS  PubMed  Google Scholar 

  198. Palmeira, C. M., & Madeira, V. M. C. (1997). Mercuric chloride toxicity in rat liver mitochondria and isolated hepatocytes. Environmental Toxicology and Pharmacology, 3, 229–235.

    Article  CAS  PubMed  Google Scholar 

  199. Dixit, R., & Malaviya, W. D. (2015). Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability, 7(2), 2189–2212.

    Article  Google Scholar 

  200. Wu, G., Kang, H., Zhang, X., Shao, H., Chu, L., & Ruan, C. (2010). A critical review on the bio-removal of hazardous heavy metals from contaminated soils: issues, progress, eco-environmental concerns and opportunities. Journal of Hazardous Materials, 174(1–3), 1–8.

    Article  CAS  PubMed  Google Scholar 

  201. Yang, T., Chen, M., & Wang, J. (2015). Genetic and chemical modification of cells for selective separation and analysis of heavy metals of biological or environmental significance. Trends in Analytical Chemistry, 66, 90–102.

    Article  CAS  Google Scholar 

  202. Ramasamy, K., Kamaludeen, S., & Parwin, B. (2006). Bioremediation of metals microbial processes and techniques. In S. N. Singh & R. D. Tripathi (Eds.), Environmental bioremediation technologies (pp. 173–187). Springer Publication.

    Google Scholar 

  203. Gavrilescu, M. (2004). Removal of heavy metals from the environment by biosorption. Engineering in Life Sciences, 4(3), 219–232.

    Article  CAS  Google Scholar 

  204. Vijayaraghavan, K., & Yun, Y. S. (2008). Bacterial biosorbents and biosorption. Biotechnology Advances, 26(3), 266–291.

    Article  CAS  PubMed  Google Scholar 

  205. Godlewska-Żyłkiewicz, B. (2006). Microorganisms in inorganic chemical analysis. Analytical and Bioanalytical Chemistry, 384(1), 114–123.

    Article  PubMed  Google Scholar 

  206. Cha, J. S., & Cooksey, D. A. (1991). Copper resistance in Pseudomonas syringae mediated by periplasmic and outer membrane proteins. Proceedings of the National Academy of Sciences of the United States of America, 88(20), 8915–8919.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  207. Telwell, C., Robinson, N. J., & Turner-Cavet, J. S. (1998). An SmtB-like repressor from Synechocystis PCC 6803 regulate a zinc exporter. Proceedings of the National Academy of Sciences of the United States of America, 95(18), 10728–10733.

    Article  ADS  Google Scholar 

  208. Teitzel, G. M., & Parsek, M. R. (2003). Heavy metal resistance of biofilm and planktonic Pseudomonas aeruginosa. Applied and Environmental Microbiology, 69(4), 2313–2320.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  209. Jyoti, B., & Harsh, K. S. N. (2014). Utilizing Aspergillus niger for bioremediation of tannery effluent. Octa Journal of Environmental Research, 2(1), 77–81.

    Google Scholar 

  210. Viti, C., Pace, A., & Giovannetti, L. (2003). Characterization of Cr(VI)-resistant bacteria isolated from chromium-contaminated soil by tannery activity. Current Microbiology, 46(1), 1–5.

    Article  CAS  PubMed  Google Scholar 

  211. Barkay, T., Miller, S. M., & Summers, A. O. (2003). Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiology Reviews, 27(2–3), 355–384.

    Article  CAS  PubMed  Google Scholar 

  212. Jasu, A., & Ray, R. R. (2021). Biofilm mediated strategies to mitigate heavy metal pollution: a critical review in metal bioremediation. Biocatalysis and Agricultural Biotechnology, 37, 102183.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by an Early Career Research grant (ECR/2016/001598) to Dr. Rudra P. Saha from DST-SERB, India.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rima Roy or Rudra P. Saha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, R., Samanta, S., Pandit, S. et al. An Overview of Bacteria-Mediated Heavy Metal Bioremediation Strategies. Appl Biochem Biotechnol 196, 1712–1751 (2024). https://doi.org/10.1007/s12010-023-04614-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04614-7

Keywords

Navigation