Skip to main content

Advertisement

Log in

Transitional Insight into the RNA-Based Oligonucleotides in Cancer Treatment

  • Review Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Conventional cancer therapies with chemodrugs suffer from various disadvantages, such as irreversible side effects on the skin, heart, liver, and nerves with even fatal consequences. RNA-based therapeutic is a novel technology which offers great potential as non-toxic, non-infectious, and well-tolerable platform. Herein, we introduce different RNA-based platforms with a special focus on siRNA, miRNA, and mRNA applications in cancer treatment in order to better understand the details of their therapeutic effects. Of note, the co-delivery of RNAs with other distinct RNA or drugs has provided safe, efficient, and novel treatment modalities for cancer treatment.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021). Global cancer statistics 2020: GLOBOCAN Estimates of Incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 71(3), 209–249.

    PubMed  Google Scholar 

  2. Qiao, J., Liu, Z., & Fu, Y. X. (2016). Adapting conventional cancer treatment for immunotherapy. Journal of Molecular Medicine (Berlin, Germany), 94(5), 489–495.

    Article  CAS  PubMed  Google Scholar 

  3. Qian, C. N., Mei, Y., & Zhang, J. (2017). Cancer metastasis: Issues and challenges. Chinese Journal of Cancer, 36(1), 38.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sadat, S. M. A., Wuest, M., Paiva, I. M., Munira, S., Sarrami, N., Sanaee, F., et al. (2021). Nano-delivery of a novel inhibitor of polynucleotide kinase/phosphatase (PNKP) for targeted sensitization of colorectal cancer to radiation-induced DNA damage. Frontiers in Oncology, 11, 772920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schirrmacher, V. (2019). From chemotherapy to biological therapy: A review of novel concepts to reduce the side effects of systemic cancer treatment (Review). International Journal of Oncology, 54(2), 407–419.

    Article  CAS  PubMed  ADS  Google Scholar 

  6. Haghiralsadat, F., Amoabediny, G., Naderinezhad, S., Forouzanfar, T., Helder, M. N., & Zandieh-Doulabi, B. (2018). Preparation of PEGylated cationic nanoliposome-siRNA complexes for cancer therapy. Artif Cells Nanomed Biotechnol., 46(sup1), 684–692.

    Article  CAS  PubMed  Google Scholar 

  7. Guan, S., Yu, X., Li, J., Xu, H., Han, W., Shi, G., et al. (2019). Delivery of survivin siRNA using cationic diphenylalanine vesicles. Chemical Research in Chinese Universities., 35(3), 434–439.

    Article  CAS  Google Scholar 

  8. Xiong, X. B., Uludag, H., & Lavasanifar, A. (2010). Virus-mimetic polymeric micelles for targeted siRNA delivery. Biomaterials, 31(22), 5886–5893.

    Article  CAS  PubMed  Google Scholar 

  9. Zheng, B., Chen, L., Pan, C. C., Wang, J. Z., Lu, G. R., Yang, S. X., et al. (2018). Targeted delivery of miRNA-204-5p by PEGylated polymer nanoparticles for colon cancer therapy. Nanomedicine, 13(7), 769–785.

    Article  CAS  PubMed  Google Scholar 

  10. Han, S., Li, G., Jia, M., Zhao, Y., He, C., Huang, M., et al. (2021). Delivery of anti-miRNA-221 for colorectal carcinoma therapy using modified cord blood mesenchymal stem cells-derived exosomes. Frontiers in Molecular Biosciences, 8, 743013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yang, C., Yin, M., Xu, G., Lin, W. J., Chen, J., Zhang, Y., et al. (2019). Biodegradable polymers as a noncoding miRNA nanocarrier for multiple targeting therapy of human hepatocellular carcinoma. Adv Healthc Mater., 8(8), e1801318.

    Article  PubMed  Google Scholar 

  12. Muller, K., Klein, P. M., Heissig, P., Roidl, A., & Wagner, E. (2016). EGF receptor targeted lipo-oligocation polyplexes for antitumoral siRNA and miRNA delivery. Nanotechnology, 27(46), 464001.

    Article  PubMed  ADS  Google Scholar 

  13. Pardi, N., Hogan, M. J., Porter, F. W., & Weissman, D. (2018). mRNA vaccines - A new era in vaccinology. Nature Reviews Drug Discovery, 17(4), 261–279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang, Y., Su, H. H., Yang, Y., Hu, Y., Zhang, L., Blancafort, P., et al. (2013). Systemic delivery of modified mRNA encoding herpes simplex virus 1 thymidine kinase for targeted cancer gene therapy. Molecular Therapy, 21(2), 358–367.

    Article  CAS  PubMed  Google Scholar 

  15. Henderson, J. M., Ujita, A., Hill, E., Yousif-Rosales, S., Smith, C., Ko, N., et al. (2021). Cap 1 messenger RNA synthesis with co-transcriptional CleanCap((R)) analog by in vitro transcription. Curr Protoc., 1(2), e39.

    Article  CAS  PubMed  Google Scholar 

  16. Pardi, N., Muramatsu, H., Weissman, D., & Kariko, K. (2013). In vitro transcription of long RNA containing modified nucleosides. Methods in Molecular Biology, 969, 29–42.

    Article  CAS  PubMed  Google Scholar 

  17. Rosigkeit, S., Meng, M., Grunwitz, C., Gomes, P., Kreft, A., Hayduk, N., et al. (2018). Monitoring translation activity of mRNA-loaded nanoparticles in mice. Molecular Pharmaceutics, 15(9), 3909–3919.

    Article  CAS  PubMed  Google Scholar 

  18. Delcayre, A., Shu, H., & Le Pecq, J.-B. (2005). Dendritic cell-derived exosomes in cancer immunotherapy: Exploiting nature’s antigen delivery pathway. Expert Review of Anticancer Therapy., 5(3), 537–547.

    Article  CAS  PubMed  Google Scholar 

  19. Wadhwa, A., Aljabbari, A., Lokras, A., Foged, C., & Thakur, A. (2020). Opportunities and challenges in the delivery of mRNA-based vaccines. Pharmaceutics., 12(2), 102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tiera, M. J., Shi, Q., Barbosa, H. F. G., & Fernandes, J. C. (2013). Polymeric systems as nanodevices for siRNA delivery. Current Gene Therapy., 13(5), 358–369.

    Article  CAS  PubMed  Google Scholar 

  21. Pushparaj, P. N., & Melendez, A. J. (2006). Short interfering RNA (siRNA) as a novel therapeutic. Clinical and Experimental Pharmacology and Physiology, 33(5–6), 504–510.

    Article  CAS  PubMed  Google Scholar 

  22. Satterlee, A. B., & Huang, L. (2014). Cancer therapy with RNAi delivered by non-viral membrane/core nanoparticles. In M. K. Brenner, & M. C. Hung (Eds.), Cancer Gene Therapy by Viral and Non‐viral Vectors (pp. 61–78). Wiley

  23. Davis, M. E., Zuckerman, J. E., Choi, C. H. J., Seligson, D., Tolcher, A., Alabi, C. A., et al. (2010). Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature, 464(7291), 1067–1070.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  24. Cao, J. (2014). The functional role of long non-coding RNAs and epigenetics. Biological Procedures Online., 16(1), 42.

    Article  Google Scholar 

  25. Kim, M., Jeong, M., Hur, S., Cho, Y., Park, J., & Jung, H., et al. (2021). Engineered ionizable lipid nanoparticles for targeted delivery of RNA therapeutics into different types of cells in the liver. Science Advances, 7(9), eabf4398.

  26. Perche, F., Clemencon, R., Schulze, K., Ebensen, T., Guzman, C. A., & Pichon, C. (2019). Neutral lipopolyplexes for in vivo delivery of conventional and replicative RNA vaccine. Molecular Therapy-Nucleic Acids, 17, 767–775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yang, D. C., Eldredge, A. C., Hickey, J. C., Muradyan, H., & Guan, Z. B. (2020). Multivalent peptide-functionalized bioreducible polymers for cellular delivery of various RNAs. Biomacromolecules, 21(4), 1613–1624.

    Article  CAS  PubMed  Google Scholar 

  28. Frohlich, T., & Wagner, E. (2010). Peptide- and polymer-based delivery of therapeutic RNA. Soft Matter, 6(2), 226–234.

    Article  ADS  Google Scholar 

  29. Yu, T., Wang, H., Zhang, Y., Wang, X., & Han, B. (2020). The delivery of RNA-interference therapies based on engineered hydrogels for bone tissue regeneration. Frontiers in Bioengineering and Biotechnology, 8, 445.

  30. Zhou, Y., Zhou, G. Y., Tian, C. F., Jiang, W. E., Jin, L., Zhang, C. Y., et al. (2016). Exosome-mediated small RNA delivery for gene therapy. Wiley Interdisciplinary Reviews-RNA, 7(6), 758–771.

    Article  CAS  PubMed  Google Scholar 

  31. Xue, V. W., Wong, S. C. C., Song, G. Q., & Cho, W. C. S. (2020). Promising RNA-based cancer gene therapy using extracellular vesicles for drug delivery. Expert Opinion on Biological Therapy, 20(7), 767–777.

    Article  CAS  PubMed  Google Scholar 

  32. Mahmoodi Chalbatani, G., Dana, H., Gharagouzloo, E., Grijalvo, S., Eritja, R., Logsdon, C. D., et al. (2019). Small interfering RNAs (siRNAs) in cancer therapy: A nano-based approach. International Journal of Nanomedicine, 14, 3111–3128.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Bernstein, E., Caudy, A. A., Hammond, S. M., & Hannon, G. J. (2001). Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature, 409(6818), 363–366.

    Article  CAS  PubMed  ADS  Google Scholar 

  34. Crooke, S. T., Wang, S., Vickers, T. A., Shen, W., & Liang, X. H. (2017). Cellular uptake and trafficking of antisense oligonucleotides. Nature Biotechnology, 35(3), 230–237.

    Article  CAS  PubMed  Google Scholar 

  35. Tatiparti, K., Sau, S., Kashaw, S. K., & Iyer, A. K. (2017). siRNA delivery strategies: A comprehensive review of recent developments. Nanomaterials (Basel)s, 7(4), 77.

    Article  Google Scholar 

  36. Mahmoodi Chalbatani, G., Dana, H., Gharagouzloo, E., Grijalvo, S., Eritja, R., Logsdon, C. D., et al. (2019). Small interfering RNAs (siRNAs) in cancer therapy: A nano-based approach. International Journal of Nanomedicine, 14, 3111–3128.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Xu, C.-F., & Wang, J. (2015). Delivery systems for siRNA drug development in cancer therapy. Asian Journal of Pharmaceutical Sciences, 10(1), 1–12.

    Article  Google Scholar 

  38. Behlke, M. A. (2008). Chemical modification of siRNAs for in vivo use. Oligonucleotides, 18(4), 305–319.

    Article  CAS  PubMed  Google Scholar 

  39. Şenel, B., & Öztürk, A. A. (2019). New approaches to tumor therapy with siRNA-decorated and chitosan-modified PLGA nanoparticles. Drug Development and Industrial Pharmacy., 45(11), 1835–1848.

    Article  PubMed  Google Scholar 

  40. Kumar Tekade, R., Maheshwari, R., Sharma, P., Tekade, M., & Singh Chauhan, A. (2015). siRNA therapy, challenges and underlying perspectives of dendrimer as delivery vector. Current Pharmaceutical Design., 21(31), 4614–36.

    Article  Google Scholar 

  41. Subhan, M. A., Attia, S. A., & Torchilin, V. P. (2021). Advances in siRNA delivery strategies for the treatment of MDR cancer. Life Sciences, 274, 119337.

    Article  CAS  PubMed  Google Scholar 

  42. Yuan, X., Naguib, S., & Wu, Z. (2011). Recent advances of siRNA delivery by nanoparticles. Expert Opinion on Drug Delivery., 8(4), 521–536.

    Article  CAS  PubMed  Google Scholar 

  43. Yoo, B., & Medarova, Z. (2017). Nanoformulations for pharmacological siRNA delivery in cancer. In J. W. M. Bulte & M. M. J. Modo (Eds.), Design and applications of nanoparticles in biomedical imaging (pp. 171–186). Springer International Publishing.

    Chapter  Google Scholar 

  44. Feng, Q., & Xiao, K. (2022). Nanoparticle-mediated delivery of STAT3 inhibitors in the treatment of lung cancer. Pharmaceutics, 14(12), 2787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Li, Z., Chen, G., Ding, L., Wang, Y., Zhu, C., Wang, K., et al. (2019). Increased survival by pulmonary treatment of established lung metastases with dual STAT3/CXCR4 inhibition by siRNA nanoemulsions. Molecular Therapy, 27(12), 2100–2110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang, J., Liu, S. Y., Chang, Y., Fang, L., Han, K., & Li, M. (2018). High efficient delivery of siRNA into tumor cells by positively charged carbon dots. Journal of Macromolecular Science Part a-Pure and Applied Chemistry, 55(11–12), 770–774.

    Article  CAS  Google Scholar 

  47. Jose, A., Labala, S., Ninave, K. M., Gade, S. K., & Venuganti, V. V. K. (2018). Effective skin cancer treatment by topical co-delivery of curcumin and STAT3 siRNA using cationic liposomes. An Official Journal of the American Association of Pharmaceutical Scientists, 19(1), 166–175.

    CAS  Google Scholar 

  48. Su, W. P., Cheng, F. Y., Shieh, D. B., Yeh, C. S., & Su, W. C. (2012). PLGA nanoparticles codeliver paclitaxel and Stat3 siRNA to overcome cellular resistance in lung cancer cells. International Journal of Nanomedicine, 7, 4269–4283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Masjedi, A., Ahmadi, A., Atyabi, F., Farhadi, S., Irandoust, M., Khazaei-Poul, Y., et al. (2020). Silencing of IL-6 and STAT3 by siRNA loaded hyaluronate-N, N, N-trimethyl chitosan nanoparticles potently reduces cancer cell progression. International Journal of Biological Macromolecules, 149, 487–500.

    Article  CAS  PubMed  Google Scholar 

  50. Joshi, N., Hajizadeh, F., Ansari Dezfouli, E., Zekiy, A. O., Nabi Afjadi, M., Mousavi, S. M., et al. (2021). Silencing STAT3 enhances sensitivity of cancer cells to doxorubicin and inhibits tumor progression. Life Sciences, 275, 119369.

    Article  CAS  PubMed  Google Scholar 

  51. Alshamsan, A., Hamdy, S., Samuel, J., El-Kadi, A. O. S., Lavasanifar, A., & Uludağ, H. (2010). The induction of tumor apoptosis in B16 melanoma following STAT3 siRNA delivery with a lipid-substituted polyethylenimine. Biomaterials, 31(6), 1420–1428.

    Article  CAS  PubMed  Google Scholar 

  52. Zhang, H., Men, K., Pan, C., Gao, Y., Li, J., Lei, S., et al. (2020). Treatment of colon cancer by degradable rrPPC nano-conjugates delivered STAT3 siRNA. International Journal of Nanomedicine, 15, 9875–9890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Labala, S., Jose, A., Chawla, S. R., Khan, M. S., Bhatnagar, S., Kulkarni, O. P., et al. (2017). Effective melanoma cancer suppression by iontophoretic co-delivery of STAT3 siRNA and imatinib using gold nanoparticles. International Journal of Pharmaceutics, 525(2), 407–417.

    Article  CAS  PubMed  Google Scholar 

  54. Shakeran, Z., Varshosaz, J., Keyhanfar, M., Mohammad-Beigi, H., Rahimi, K., & Sutherland, D. S. (2022). Co-delivery of STAT3 siRNA and methotrexate in breast cancer cells. Artificial Cells, Nanomedicine, and Biotechnology., 50(1), 29–39.

    Article  CAS  PubMed  Google Scholar 

  55. Ngamcherdtrakul, W., Morry, J., Gu, S., Castro, D. J., Goodyear, S. M., Sangvanich, T., et al. (2015). Cationic polymer modified mesoporous silica nanoparticles for targeted siRNA delivery to HER2+ breast cancer. Advanced Functional Materials., 25(18), 2646–2659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bae, K. H., Lee, K., Kim, C., & Park, T. G. (2011). Surface functionalized hollow manganese oxide nanoparticles for cancer targeted siRNA delivery and magnetic resonance imaging. Biomaterials, 32(1), 176–184.

    Article  CAS  PubMed  Google Scholar 

  57. Liang, S.-F., Zuo, F.-F., Yin, B.-C., & Ye, B.-C. (2022). Delivery of siRNA based on engineered exosomes for glioblastoma therapy by targeting STAT3. Biomaterials Science., 10(6), 1582–1590.

    Article  CAS  PubMed  Google Scholar 

  58. Tang, M., Chen, Y., Li, B., Sugimoto, H., Yang, S., Yang, C., et al. (2021). Therapeutic targeting of STAT3 with small interference RNAs and antisense oligonucleotides embedded exosomes in liver fibrosis. The FASEB Journal, 35(5), e21557.

    Article  CAS  PubMed  Google Scholar 

  59. Posocco, P., Liu, X. X., Laurini, E., Marson, D., Chen, C., Liu, C., et al. (2013). Impact of siRNA overhangs for dendrimer-mediated siRNA delivery and gene silencing. Molecular Pharmaceutics., 10(8), 3262–3273.

    Article  CAS  PubMed  Google Scholar 

  60. Lim, M. S. H., Nishiyama, Y., Ohtsuki, T., Watanabe, K., Kobuchi, H., Kobayashi, K., et al. (2021). Lactosome-conjugated siRNA nanoparticles for photo-enhanced gene silencing in cancer cells. Journal of Pharmaceutical Sciences, 110(4), 1788–1798.

    Article  CAS  PubMed  Google Scholar 

  61. Ben-David-Naim, M., Dagan, A., Grad, E., Aizik, G., Nordling-David, M. M., Morss Clyne, A., et al. (2019). Targeted siRNA nanoparticles for mammary carcinoma therapy. Cancers (Basel), 11(4), 442.

    Article  CAS  PubMed  Google Scholar 

  62. Zorn, E., Nelson, E. A., Mohseni, M., Porcheray, F., Kim, H., Litsa, D., et al. (2006). IL-2 regulates FOXP3 expression in human CD4+CD25+ regulatory T cells through a STAT-dependent mechanism and induces the expansion of these cells in vivo. Blood, 108(5), 1571–1579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yu, H., Pardoll, D., & Jove, R. (2009). STATs in cancer inflammation and immunity: A leading role for STAT3. Nature Reviews Cancer, 9(11), 798–809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Harris, T. J., Grosso, J. F., Yen, H.-R., Xin, H., Kortylewski, M., Albesiano, E., et al. (2007). Cutting edge: An in vivo requirement for STAT3 signaling in TH17 development and TH17-dependent autoimmunity. The Journal of Immunology, 179(7), 4313–4317.

    Article  CAS  PubMed  Google Scholar 

  65. Yu, H., & Jove, R. (2004). The STATs of cancer — New molecular targets come of age. Nature Reviews Cancer, 4(2), 97–105.

    Article  CAS  PubMed  Google Scholar 

  66. Yu, H., Kortylewski, M., & Pardoll, D. (2007). Crosstalk between cancer and immune cells: Role of STAT3 in the tumour microenvironment. Nature Reviews Immunology, 7(1), 41–51.

    Article  CAS  PubMed  Google Scholar 

  67. Jing, N., & Tweardy, D. J. (2005). Targeting Stat3 in cancer therapy. Anti-Cancer Drugs, 16(6), 601–607.

  68. Zhang, H., Men, K., Pan, C., Gao, Y., Li, J., Lei, S., et al. (2020). Treatment of colon cancer by degradable rrPPC nano-conjugates delivered STAT3 siRNA. International Journal of Nanomedicine, 15, 9875–9890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Das, J., Das, S., Paul, A., Samadder, A., Bhattacharyya, S. S., & Khuda-Bukhsh, A. R. (2014). Assessment of drug delivery and anticancer potentials of nanoparticles-loaded siRNA targeting STAT3 in lung cancer, in vitro and in vivo. Toxicology Letters, 225(3), 454–466.

    Article  CAS  PubMed  Google Scholar 

  70. Zhang, S., Zhang, X., Lei, W., Liang, J., Xu, Y., Liu, H., et al. (2019). Genome-wide profiling reveals alternative polyadenylation of mRNA in human non-small cell lung cancer. Journal of Translational Medicine, 17(1), 257.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Yhee, J. Y., Song, S., Lee, S. J., Park, S. G., Kim, K. S., Kim, M. G., et al. (2015). Cancer-targeted MDR-1 siRNA delivery using self-cross-linked glycol chitosan nanoparticles to overcome drug resistance. Journal of Controlled Release, 198, 1–9.

    Article  CAS  PubMed  Google Scholar 

  72. Saad, M., Garbuzenko, O. B., & Minko, T. (2008). Co-delivery of siRNA and an anticancer drug for treatment of multidrug-resistant cancer. Nanomedicine (London, England), 3(6), 761–776.

    Article  CAS  PubMed  Google Scholar 

  73. Falamarzian, A., Aliabadi, H. M., Molavi, O., Seubert, J. M., Lai, R., Uludag, H., et al. (2014). Effective down-regulation of signal transducer and activator of transcription 3 (STAT3) by polyplexes of siRNA and lipid-substituted polyethyleneimine for sensitization of breast tumor cells to conventional chemotherapy. Journal of Biomedical Materials Research. Part A, 102(9), 3216–3228.

    Article  PubMed  Google Scholar 

  74. Dorraki, N., Ghale-Noie, Z. N., Ahmadi, N. S., Keyvani, V., Bahadori, R. A., Nejad, A. S., et al. (2021). miRNA-148b and its role in various cancers. Epigenomics, 13(24), 1939–1960.

    Article  CAS  PubMed  Google Scholar 

  75. Mollazadeh, S., Fazly Bazzaz, B. S., Neshati, V., de Vries, A. A. F., Naderi-Meshkin, H., Mojarad, M., et al. (2019). Overexpression of MicroRNA-148b-3p stimulates osteogenesis of human bone marrow-derived mesenchymal stem cells: The role of MicroRNA-148b-3p in osteogenesis. BMC Medical Genetics, 20(1), 117.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Devi, G. R. (2006). siRNA-based approaches in cancer therapy. Cancer Gene Therapy, 13(9), 819–829.

    Article  CAS  PubMed  Google Scholar 

  77. Si, W., Shen, J., Zheng, H., & Fan, W. (2019). The role and mechanisms of action of microRNAs in cancer drug resistance. Clinical Epigenetics, 11(1), 25.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Bonneau, E., Neveu, B., Kostantin, E., Tsongalis, G. J., & De Guire, V. (2019). How close are miRNAs from clinical practice? A perspective on the diagnostic and therapeutic market. Ejifcc, 30(2), 114–127.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Huang, T., Kang, W., Zhang, B., Wu, F., Dong, Y., Tong, J. H., et al. (2016). miR-508-3p concordantly silences NFKB1 and RELA to inactivate canonical NF-kappaB signaling in gastric carcinogenesis. Molecular Cancer, 15, 9.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Gao, S., Tian, H., Guo, Y., Li, Y., Guo, Z., Zhu, X., et al. (2015). miRNA oligonucleotide and sponge for miRNA-21 inhibition mediated by PEI-PLL in breast cancer therapy. Acta Biomaterialia, 25, 184–193.

    Article  CAS  PubMed  Google Scholar 

  81. Eckburg, A., Dein, J., Berei, J., Schrank, Z., & Puri, N. (2020). Oligonucleotides and microRNAs targeting telomerase subunits in cancer therapy. Cancers (Basel), 12(9), 2337.

    Article  CAS  PubMed  Google Scholar 

  82. Komatsu, S., Kitai, H., & Suzuki, H. I. (2023). Network regulation of microRNA biogenesis and target interaction. CELLS, 12(2), 306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Merritt, W. M., Lin, Y. G., Han, L. Y., Kamat, A. A., Spannuth, W. A., Schmandt, R., et al. (2008). Dicer, Drosha, and outcomes in patients with ovarian cancer. New England Journal of Medicine, 359(25), 2641–2650.

    Article  CAS  PubMed  Google Scholar 

  84. Gaur, A. B., Holbeck, S. L., Colburn, N. H., & Israel, M. A. (2011). Downregulation of Pdcd4 by mir-21 facilitates glioblastoma proliferation in vivo. Neuro-Oncology, 13(6), 580–590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhang, Y., Buhrman, J. S., Liu, Y., Rayahin, J. E., & Gemeinhart, R. A. (2016). Reducible micelleplexes are stable systems for anti-miRNA delivery in cerebrospinal fluid. Molecular Pharmaceutics, 13(6), 1791–1799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zhang, Y., Kollmer, M., Buhrman, J. S., Tang, M. Y., & Gemeinhart, R. A. (2014). Arginine-rich, cell penetrating peptide-anti-microRNA complexes decrease glioblastoma migration potential. Peptides, 58, 83–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hatakeyama, H., Murata, M., Sato, Y., Takahashi, M., Minakawa, N., Matsuda, A., et al. (2014). The systemic administration of an anti-miRNA oligonucleotide encapsulated pH-sensitive liposome results in reduced level of hepatic microRNA-122 in mice. Journal of Controlled Release, 173, 43–50.

    Article  CAS  PubMed  Google Scholar 

  88. Avci-Adali, M., & Santos, H. A. (2022). Current trends in delivery of non-viral nucleic acid-based therapeutics for improved efficacy. Advanced Drug Delivery Reviews, 185, 114297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Pardi, N., Tuyishime, S., Muramatsu, H., Kariko, K., Mui, B. L., Tam, Y. K., et al. (2015). Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes. Journal of Controlled Release, 217, 345–351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hou, X., Zaks, T., Langer, R., & Dong, Y. (2021). Lipid nanoparticles for mRNA delivery. Nature Reviews Materials, 6(12), 1078–1094.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  91. Han, H., Bartolo, R., Li, J., Shahbazi, M. A., & Santos, H. A. (2022). Biomimetic platelet membrane-coated nanoparticles for targeted therapy. European Journal of Pharmaceutics and Biopharmaceutics, 172, 1–15.

    Article  PubMed  Google Scholar 

  92. Najibi, A. J., Dellacherie, M. O., Shih, T. Y., Doherty, E. J., White, D. A., Bauleth-Ramos, T., et al. (2022). Scaffold vaccines for generating robust and tunable antibody responses. Advanced Functional Materials, 32(16), 2110905.

    Article  CAS  Google Scholar 

  93. Li, J., Huang, D., Cheng, R., Figueiredo, P., Fontana, F., Correia, A., et al. (2022). Multifunctional biomimetic nanovaccines based on photothermal and weak-immunostimulatory nanoparticulate cores for the immunotherapy of solid tumors. Advanced Materials, 34(9), e2108012.

    Article  PubMed  Google Scholar 

  94. Melamed, J. R., Hajj, K. A., Chaudhary, N., Strelkova, D., Arral, M. L., Pardi, N., et al. (2022). Lipid nanoparticle chemistry determines how nucleoside base modifications alter mRNA delivery. Journal of Controlled Release, 341, 206–214.

    Article  CAS  PubMed  Google Scholar 

  95. Mu, Z., Wiehe, K., Saunders, K. O., Henderson, R., Cain, D. W., Parks, R., et al. (2022). mRNA-encoded HIV-1 Env trimer ferritin nanoparticles induce monoclonal antibodies that neutralize heterologous HIV-1 isolates in mice. Cell Reports, 38(11), 110514.

    Article  CAS  PubMed  Google Scholar 

  96. Kantarjian, H., Stein, A., Gokbuget, N., Fielding, A. K., Schuh, A. C., Ribera, J. M., et al. (2017). Blinatumomab versus chemotherapy for advanced acute lymphoblastic leukemia. New England Journal of Medicine, 376(9), 836–847.

    Article  CAS  PubMed  Google Scholar 

  97. Sahin, U., Kariko, K., & Tureci, O. (2014). mRNA-based therapeutics–Developing a new class of drugs. Nature Reviews. Drug Discovery, 13(10), 759–780.

    Article  CAS  PubMed  Google Scholar 

  98. Mallory, K. L., Taylor, J. A., Zou, X., Waghela, I. N., Schneider, C. G., Sibilo, M. Q., et al. (2021). Messenger RNA expressing PfCSP induces functional, protective immune responses against malaria in mice. NPJ Vaccines, 6(1), 84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Stadler, C. R., Bahr-Mahmud, H., Celik, L., Hebich, B., Roth, A. S., Roth, R. P., et al. (2017). Elimination of large tumors in mice by mRNA-encoded bispecific antibodies. Nature Medicine, 23(7), 815–817.

    Article  CAS  PubMed  Google Scholar 

  100. Lei, S., Zhang, X., Men, K., Gao, Y., Yang, X., Wu, S., et al. (2020). Efficient colorectal cancer gene therapy with IL-15 mRNA nanoformulation. Molecular Pharmaceutics, 17(9), 3378–3391.

    Article  CAS  PubMed  Google Scholar 

  101. Forterre, A. V., Wang, J. H., Delcayre, A., Kim, K., Green, C., Pegram, M. D., et al. (2020). Extracellular vesicle-mediated in vitro transcribed mRNA delivery for treatment of HER2(+) breast cancer xenografts in mice by prodrug CB1954 without general toxicity. Molecular Cancer Therapeutics, 19(3), 858–867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Miao, L., Zhang, Y., & Huang, L. (2021). mRNA vaccine for cancer immunotherapy. Molecular Cancer, 20(1), 41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Mockey, M., Bourseau, E., Chandrashekhar, V., Chaudhuri, A., Lafosse, S., Le Cam, E., et al. (2007). mRNA-based cancer vaccine: Prevention of B16 melanoma progression and metastasis by systemic injection of MART1 mRNA histidylated lipopolyplexes. Cancer Gene Therapy, 14(9), 802–814.

    Article  CAS  PubMed  Google Scholar 

  104. Le Moignic, A., Malard, V., Benvegnu, T., Lemiegre, L., Berchel, M., Jaffres, P. A., et al. (2018). Preclinical evaluation of mRNA trimannosylated lipopolyplexes as therapeutic cancer vaccines targeting dendritic cells. Journal of Controlled Release, 278, 110–121.

    Article  PubMed  Google Scholar 

  105. Salomon, N., Vascotto, F., Selmi, A., Vormehr, M., Quinkhardt, J., Bukur, T., et al. (2020). A liposomal RNA vaccine inducing neoantigen-specific CD4(+) T cells augments the antitumor activity of local radiotherapy in mice. Oncoimmunology, 9(1), 1771925.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Yan, J., Chen, R., Zhang, H., & Bryers, J. D. (2019). Injectable biodegradable chitosan-alginate 3D porous gel scaffold for mRNA vaccine delivery. Macromolecular Bioscience, 19(2), e1800242.

    Article  PubMed  Google Scholar 

  107. Zhang, W., Liu, Y., Min Chin, J., & Phua, K. K. L. (2021). Sustained release of PKR inhibitor C16 from mesoporous silica nanoparticles significantly enhances mRNA translation and anti-tumor vaccination. European Journal of Pharmaceutics and Biopharmaceutics, 163, 179–187.

    Article  CAS  PubMed  Google Scholar 

  108. Coolen, A. L., Lacroix, C., Mercier-Gouy, P., Delaune, E., Monge, C., Exposito, J. Y., et al. (2019). Poly(lactic acid) nanoparticles and cell-penetrating peptide potentiate mRNA-based vaccine expression in dendritic cells triggering their activation. Biomaterials, 195, 23–37.

    Article  CAS  PubMed  Google Scholar 

  109. Haabeth, O. A. W., Blake, T. R., McKinlay, C. J., Waymouth, R. M., Wender, P. A., & Levy, R. (2018). mRNA vaccination with charge-altering releasable transporters elicits human T cell responses and cures established tumors in mice. Proc Natl Acad Sci U S A, 115(39), E9153–E9161.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  110. Meyer, R. A., Hussmann, G. P., Peterson, N. C., Santos, J. L., & Tuesca, A. D. (2022). A scalable and robust cationic lipid/polymer hybrid nanoparticle platform for mRNA delivery. International Journal of Pharmaceutics, 611, 121314.

    Article  CAS  PubMed  Google Scholar 

  111. Alameh, M.-G., & Weissman, D. (2022). Chapter 7 - Nucleoside modifications of in vitro transcribed mRNA to reduce immunogenicity and improve translation of prophylactic and therapeutic antigens. In P. H. Giangrande, V. de Franciscis, & J. J. Rossi (Eds.), RNA Therapeutics (pp. 141–69). Academic Press.

    Chapter  Google Scholar 

  112. Knudson, C. J., Alves-Peixoto, P., Muramatsu, H., Stotesbury, C., Tang, L., Lin, P. J. C., et al. (2021). Lipid-nanoparticle-encapsulated mRNA vaccines induce protective memory CD8 T cells against a lethal viral infection. Molecular Therapy., 29(9), 2769–2781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Zuazo, M., Arasanz, H., Fernandez-Hinojal, G., Garcia-Granda, M. J., Gato, M., Bocanegra, A., et al. (2019). Functional systemic CD4 immunity is required for clinical responses to PD-L1/PD-1 blockade therapy. EMBO Molecular Medicine, 11(7), e10293.

    Article  PubMed  PubMed Central  Google Scholar 

  114. De Ridder, K., Locy, H., Piccioni, E., Zuazo, M. I., Awad, R. M., & Verhulst, S., et al. (2022). TNF-α-secreting lung tumor-infiltrated monocytes play a pivotal role during anti-PD-L1 immunotherapy. Frontiers in Immunology, 13, 811867.

  115. Tombácz, I., Weissman, D., & Pardi, N. (2021). Vaccination with messenger RNA: A promising alternative to DNA vaccination. In Â. Sousa (Ed.), DNA Vaccines: Methods and Protocols (pp. 13–31). New York: Springer US.

    Chapter  Google Scholar 

  116. Oberli, M. A., Reichmuth, A. M., Dorkin, J. R., Mitchell, M. J., Fenton, O. S., Jaklenec, A., et al. (2017). Lipid nanoparticle assisted mRNA delivery for potent cancer immunotherapy. Nano Letters, 17(3), 1326–1335.

    Article  CAS  PubMed  ADS  Google Scholar 

  117. Tombacz, I., Laczko, D., Shahnawaz, H., Muramatsu, H., Natesan, A., Yadegari, A., et al. (2021). Highly efficient CD4+ T cell targeting and genetic recombination using engineered CD4+ cell-homing mRNA-LNPs. Molecular Therapy, 29(11), 3293–3304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kranz, L. M., Diken, M., Haas, H., Kreiter, S., Loquai, C., Reuter, K. C., et al. (2016). Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature, 534(7607), 396–401.

    Article  PubMed  ADS  Google Scholar 

  119. Fromm, P. D., Papadimitrious, M. S., Hsu, J. L., Van Kooten, L. N., Verma, N. D., Lo, T. H., et al. (2016). CMRF-56(+) blood dendritic cells loaded with mRNA induce effective antigen-specific cytotoxic T-lymphocyte responses. Oncoimmunology., 5(6), e1168555.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Persano, S., Guevara, M. L., Li, Z., Mai, J., Ferrari, M., Pompa, P. P., et al. (2017). Lipopolyplex potentiates anti-tumor immunity of mRNA-based vaccination. Biomaterials, 125, 81–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Liu, L., Wang, Y., Miao, L., Liu, Q., Musetti, S., Li, J., et al. (2018). Combination immunotherapy of MUC1 mRNA nano-vaccine and CTLA-4 blockade effectively inhibits growth of triple negative breast cancer. Molecular Therapy, 26(1), 45–55.

    Article  CAS  PubMed  ADS  Google Scholar 

  122. Hou, K. K., Pan, H., Ratner, L., Schlesinger, P. H., & Wickline, S. A. (2013). Mechanisms of nanoparticle-mediated siRNA transfection by melittin-derived peptides. ACS Nano, 7(10), 8605–8615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Cavalli, R., Primo, L., Sessa, R., Chiaverina, G., di Blasio, L., Alongi, J., et al. (2017). The AGMA1 polyamidoamine mediates the efficient delivery of siRNA. Journal of Drug Targeting, 25(9–10), 891–898.

    Article  CAS  PubMed  Google Scholar 

  124. Xie, X., Yang, Y., Lin, W., Liu, H., Liu, H., Yang, Y., et al. (2015). Cell-penetrating peptide-siRNA conjugate loaded YSA-modified nanobubbles for ultrasound triggered siRNA delivery. Colloids and Surfaces. B, Biointerfaces, 136, 641–650.

    Article  CAS  PubMed  Google Scholar 

  125. Ma, D., Tian, S., Baryza, J., Luft, J. C., & DeSimone, J. M. (2015). Reductively responsive hydrogel nanoparticles with uniform size, shape, and tunable composition for systemic siRNA delivery in vivo. Molecular Pharmaceutics, 12(10), 3518–3526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Majidi Zolbanin, N., Jafari, R., Majidi, J., Atyabi, F., Yousefi, M., Jadidi-Niaragh, F., et al. (2018). Targeted co-delivery of docetaxel and cMET siRNA for treatment of mucin1 overexpressing breast cancer cells. Advanced Drug Delivery Reviews, 8(3), 383–393.

    Google Scholar 

  127. Amri, J., Molaee, N., Karami, H., & Baazm, M. (2021). Combination of two miRNAs has a stronger effect on stimulating apoptosis, inhibiting cell growth, and increasing erlotinib sensitivity relative to single miRNA in A549 lung cancer cells. Biotechnology and Applied Biochemistry, 69, 1383–1394.

    Article  PubMed  Google Scholar 

  128. Mittal, A., Chitkara, D., Behrman, S. W., & Mahato, R. I. (2014). Efficacy of gemcitabine conjugated and miRNA-205 complexed micelles for treatment of advanced pancreatic cancer. Biomaterials, 35(25), 7077–7087.

    Article  CAS  PubMed  Google Scholar 

  129. Zeng, W., Su, M., Anderson, K. S., & Sasada, T. (2014). Artificial antigen-presenting cells expressing CD80, CD70, and 4–1BB ligand efficiently expand functional T cells specific to tumor-associated antigens. Immunobiology, 219(8), 583–592.

    Article  CAS  PubMed  Google Scholar 

  130. Liao, D., Luo, Y., Markowitz, D., Xiang, R., & Reisfeld, R. A. (2009). Cancer associated fibroblasts promote tumor growth and metastasis by modulating the tumor immune microenvironment in a 4T1 murine breast cancer model. PLoS ONE, 4(11), e7965.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  131. Anguille, S., Van de Velde, A. L., Smits, E. L., Van Tendeloo, V. F., Juliusson, G., Cools, N., et al. (2017). Dendritic cell vaccination as postremission treatment to prevent or delay relapse in acute myeloid leukemia. Blood, 130(15), 1713–1721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Hobo, W., Novobrantseva, T. I., Fredrix, H., Wong, J., Milstein, S., Epstein-Barash, H., et al. (2013). Improving dendritic cell vaccine immunogenicity by silencing PD-1 ligands using siRNA-lipid nanoparticles combined with antigen mRNA electroporation. Cancer Immunology, Immunotherapy, 62(2), 285–297.

    Article  CAS  PubMed  Google Scholar 

  133. Shin, J. H., Shin, D. H., & Kim, J. S. (2020). Let-7 miRNA and CDK4 siRNA co-encapsulated in Herceptin-conjugated liposome for breast cancer stem cells. Asian Journal of Pharmaceutical Sciences, 15(4), 472–481.

    Article  PubMed  Google Scholar 

  134. Xu, C., Li, D., Cao, Z., Xiong, M., Yang, X., & Wang, J. (2019). Facile hydrophobization of siRNA with anticancer drug for non-cationic nanocarrier-mediated systemic delivery. Nano Letters, 19(4), 2688–2693.

    Article  CAS  PubMed  ADS  Google Scholar 

  135. Amreddy, N., Babu, A., Panneerselvam, J., Srivastava, A., Muralidharan, R., Chen, A., et al. (2018). Chemo-biologic combinatorial drug delivery using folate receptor-targeted dendrimer nanoparticles for lung cancer treatment. Nanomedicine, 14(2), 373–384.

    Article  CAS  PubMed  Google Scholar 

  136. Taratula, O., Kuzmov, A., Shah, M., Garbuzenko, O. B., & Minko, T. (2013). Nanostructured lipid carriers as multifunctional nanomedicine platform for pulmonary co-delivery of anticancer drugs and siRNA. Journal of Controlled Release, 171(3), 349–357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Li, X., An, Sun, Liu, Y.-j, Zhang, W.-J., Pang, N., Cheng, S.-X., et al. (2018). Amphiphilic dendrimer engineered nanocarrier systems for co-delivery of siRNA and paclitaxel to matrix metalloproteinase-rich tumors for synergistic therapy. NPG Asia Materials, 10(4), 238–54.

    Article  CAS  Google Scholar 

  138. Jose, A., Labala, S., & Venuganti, V. V. (2017). Co-delivery of curcumin and STAT3 siRNA using deformable cationic liposomes to treat skin cancer. Journal of Drug Targeting, 25(4), 330–341.

    Article  CAS  PubMed  Google Scholar 

  139. Luo, K., Gao, Y., Yin, S., Yao, Y., Yu, H., Wang, G., et al. (2021). Co-delivery of paclitaxel and STAT3 siRNA by a multifunctional nanocomplex for targeted treatment of metastatic breast cancer. Acta Biomaterialia, 134, 649–663.

    Article  CAS  PubMed  Google Scholar 

  140. Joshi, N., Hajizadeh, F., Ansari Dezfouli, E., Zekiy, A. O., Nabi Afjadi, M., Mousavi, S. M., et al. (2021). Silencing STAT3 enhances sensitivity of cancer cells to doxorubicin and inhibits tumor progression. Life Sciences, 275, 119369.

    Article  CAS  PubMed  Google Scholar 

  141. Wang, L., & Liang, T. T. (2020). CD59 receptor targeted delivery of miRNA-1284 and cisplatin-loaded liposomes for effective therapeutic efficacy against cervical cancer cells. AMB Express, 10(1), 54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Yang, H., Liu, Y., Qiu, Y., Ding, M., & Zhang, Y. (2019). MiRNA-204-5p and oxaliplatin-loaded silica nanoparticles for enhanced tumor suppression effect in CD44-overexpressed colon adenocarcinoma. International Journal of Pharmaceutics, 566, 585–593.

    Article  CAS  PubMed  Google Scholar 

  143. Liu, A., Zhou, Y., Zhao, T., Tang, X., Zhou, B., & Xu, J. (2021). MiRNA-3662 reverses the gemcitabine resistance in pancreatic cancer through regulating the tumor metabolism. Cancer Chemotherapy and Pharmacology, 88(2), 343–357.

    Article  CAS  PubMed  Google Scholar 

  144. Ngamcherdtrakul, W., Reda, M., Nelson, M. A., Wang, R., Zaidan, H. Y., Bejan, D. S., et al. (2021). In situ tumor vaccination with nanoparticle co-delivering CpG and STAT3 siRNA to effectively induce whole-body antitumor immune response. Advanced Materials, 33(31), e2100628.

    Article  PubMed  Google Scholar 

  145. Cafri, G., Gartner, J. J., Zaks, T., Hopson, K., Levin, N., Paria, B. C., et al. (2020). mRNA vaccine-induced neoantigen-specific T cell immunity in patients with gastrointestinal cancer. The Journal of Clinical Investigation, 130(11), 5976–5988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Sebastian, M., Papachristofilou, A., Weiss, C., Früh, M., Cathomas, R., Hilbe, W., et al. (2014). Phase Ib study evaluating a self-adjuvanted mRNA cancer vaccine (RNActive®) combined with local radiation as consolidation and maintenance treatment for patients with stage IV non-small cell lung cancer. BMC Cancer, 14, 748.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Weide, B., Pascolo, S., Scheel, B., Derhovanessian, E., Pflugfelder, A., Eigentler, T. K., et al. (2009). Direct injection of protamine-protected mRNA: Results of a phase 1/2 vaccination trial in metastatic melanoma patients. Journal of Immunotherapy, 32(5), 498–507.

    Article  CAS  PubMed  Google Scholar 

  148. El Dika, I., Lim, H. Y., Yong, W. P., Lin, C.-C., Yoon, J.-H., Modiano, M., et al. (2019). An open-label, multicenter, phase i, dose escalation study with phase ii expansion cohort to determine the safety, pharmacokinetics, and preliminary antitumor activity of intravenous TKM-080301 in subjects with advanced hepatocellular carcinoma. The Oncologist, 24(6), 747-e218.

    Article  PubMed  Google Scholar 

  149. Golan, T., Khvalevsky, E. Z., Hubert, A., Gabai, R. M., Hen, N., Segal, A., et al. (2015). RNAi therapy targeting KRAS in combination with chemotherapy for locally advanced pancreatic cancer patients. Oncotarget, 6(27), 24560–24570.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Kumthekar, P., Ko, C. H., Paunesku, T., Dixit, K., Sonabend, A. M., Bloch, O., et al. (2021). A first-in-human phase 0 clinical study of RNA interference-based spherical nucleic acids in patients with recurrent glioblastoma. Science Translational Medicine, 13(584)

  151. Hong, D. S., Kang, Y.-K., Borad, M., Sachdev, J., Ejadi, S., Lim, H. Y., et al. (2020). Phase 1 study of MRX34, a liposomal miR-34a mimic, in patients with advanced solid tumours. British Journal of Cancer, 122(11), 1630–1637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. van Zandwijk, N., Pavlakis, N., Kao, S. C., Linton, A., Boyer, M. J., Clarke, S., et al. (2017). Safety and activity of microRNA-loaded minicells in patients with recurrent malignant pleural mesothelioma: A first-in-man, phase 1, open-label, dose-escalation study. The lancet Oncology, 18(10), 1386–1396.

    Article  PubMed  Google Scholar 

  153. Tanaka, H., Hazama, S., Iida, M., Tsunedomi, R., Takenouchi, H., Nakajima, M., et al. (2017). miR-125b-1 and miR-378a are predictive biomarkers for the efficacy of vaccine treatment against colorectal cancer. Cancer Science, 108(11), 2229–2238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. An efficacy study of adjuvant treatment with the personalized cancer vaccine mRNA-4157 and pembrolizumab in participants with high-risk melanoma (KEYNOTE-942). ClinicalTrials.gov. Available from: https://clinicaltrials.gov/ct2/show/record/NCT03897881. Accessed 1 Jul 2023.

  155. Bauman, J., Burris, H., Clarke, J., Patel, M., Cho, D., Gutierrez, M., et al. (2020). 798 Safety, tolerability, and immunogenicity of mRNA-4157 in combination with pembrolizumab in subjects with unresectable solid tumors (KEYNOTE-603): An update. Journal for ImmunoTherapy of Cancer, 8(Suppl 3), A477.

    Google Scholar 

  156. Zhan, X., Wang, B., Wang, Y., Chen, L., Peng, X., Li, J., et al. (2020). Phase I trial of personalized mRNA vaccine encoding neoantigen in patients with advanced digestive system neoplasms. Journal of Clinical Oncology, 38(15_suppl), e15269-e.

    Article  Google Scholar 

  157. A study of mRNA-5671/V941 as monotherapy and in combination with pembrolizumab (V941-001): ClinicalTrials.gov. Available from: https://clinicaltrials.gov/ct2/show/study/NCT03948763. Accessed 1 Jul 2023.

  158. Pandey, M., Ojha, D., Bansal, S., Rode, A. B., & Chawla, G. (2021). From bench side to clinic: Potential and challenges of RNA vaccines and therapeutics in infectious diseases. Molecular Aspects of Medicine, 81, 101003.

    Article  CAS  PubMed  Google Scholar 

  159. Zhu, Y., Zhu, L., Wang, X., & Jin, H. (2022). RNA-based therapeutics: An overview and prospectus. Cell Death & Disease, 13(7), 644.

    Article  CAS  Google Scholar 

  160. Shahbazi, R., Ozpolat, B., & Ulubayram, K. (2016). Oligonucleotide-based theranostic nanoparticles in cancer therapy. Nanomedicine (London, England), 11(10), 1287–1308.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Mashhad University of Medical Sciences.

Funding

This work was supported by the Mashhad University of Medical Sciences, Mashhad, Iran.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Hamed Tabasi: writing original draft; Samaneh Mollazadeh: writing, review, and editing; Elham Fazeli: writing, review, and editing; Khalil Abnous: writing, review, and editing; Seyed Mohammad Taghdisi: writing, review, and editing; Mohammad Ramezani: supervision; Mona Alibolandi: conceptualization and supervision. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Mohammad Ramezani or Mona Alibolandi.

Ethics declarations

Ethics Approval

This is a review study. The Research Ethics Committee of Mashhad University of Medical Sciences has confirmed that no ethical approval is required.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tabasi, H., Mollazadeh, S., Fazeli, E. et al. Transitional Insight into the RNA-Based Oligonucleotides in Cancer Treatment. Appl Biochem Biotechnol 196, 1685–1711 (2024). https://doi.org/10.1007/s12010-023-04597-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04597-5

Keywords

Navigation