Skip to main content

Advertisement

Log in

Efficacy of High-Altitude Biofilm-Forming Novel Bacillus subtilis Species as Plant Growth-Promoting Rhizobacteria on Zea mays L

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

With the global population explosion, the need for increasing crop productivity is reaching its peak. The significance of organic means of cultivation including biofertilizers and biopesticides is undeniable in this context. Over the last few decades, the use of rhizobacteria to induce crop productivity has gained particular interest of researchers. Of these, several Bacillus spp. have been known for their potential plant growth-promoting and phyto-pathogenic actions. Keeping this background in mind, this study was formulated with an aim to unravel the PGPR and phyto-pathogenic potency of Bacillus sp. isolated from extreme environmental conditions, viz. high-altitude waters of Ganges at Gangotri (Basin Extent Longitude Latitude—73° 2′ to 89° 5′ E 21° 6′ to 31° 21′ N). Based on recent studies showing the impact of biofilm on bacterial PGPR potency, three novel strains of Bacillus subtilis were isolated on basis of their extremely high biofilm-producing abilities (BRAM_G1: Accession Number MW006633; BRAM_G2: Accession Numbers MT998278-MT998280; BRAM_G3: Accession Number MT998617), and were tested for their PGPR properties like nutrient sequestration, growth hormone production (IAA, GA3), stress-responsive enzyme production (ACC deaminase) and lignocellulolytic and agriculturally important enzyme productions. The strains were further tested for the plethora of metabolites (liquid and VOCs) exuded by them. Finally, the strains both in individually and in an association, i.e. consortium was tested on a test crop, viz. Zea mays L., and the data were collected at regular intervals and the results were statistically analysed. In the present study, the role of high-altitude novel Bacillus subtilis strains as potent PGPR has been analysed statistically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Plot 1
Plot 2

Similar content being viewed by others

References

  1. Ahemad, M., & Kibret, M. (2014). Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. Journal of King Saud University Science, 26, 1–20. https://doi.org/10.1016/j.jksus.2013.05.001

    Article  Google Scholar 

  2. Holbrook, A. A., Edge, W. J. W., & Bailey, F. (1961) Spectrophotometric method for determination of gibberellic acid. Gibberellins, Advances in Chemistry, American Chemical Society, pp. 159–167

  3. Arora, N. K., Mehnaz, S., & Balestrini, R. (2016). Bioformulations: For sustainable agriculture. Springer. https://doi.org/10.1016/j.mib.2017.03.011

    Book  Google Scholar 

  4. Backer, R., Rokem, J. S., Ilangumaran, G., Lamont, J., Praslickova, D., Ricci, E., Subramanian, S., Smith, D. L. (2018). Plant growth-promoting rhizobacteria: Context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Frontiers in Plant Science, 9, https://doi.org/10.3389/fpls.2018.01473

  5. Bailly, A., & Weisskopf, L. (2012). The modulating effect of bacterial volatiles on plant growth: Current knowledge and future challenges. Plant Signaling & Behavior, 7, 79–85. https://doi.org/10.4161/psb.7.1.18418

    Article  CAS  Google Scholar 

  6. Roy, B., Maitra, D., Mitra, A.K. (2021). Methods of sample preparation and assay of bacterial biofilms with special reference to their significance in agriculture and extreme environments. In: Nag, M., Lahiri, D. (eds), Analytical Methodologies for Biofilm Research. Springer Protocols Handbooks. Springer, New York, NY. https://doi.org/10.1007/978-1-0716-1378-8_2

  7. Roy, B., Maitra, D., Chandra, A., Ghosh, J., & Mitra, A. K. (2022). Biofilm production in a novel polyextremophilic Bacillus subtilis: A strategic maneuver for survival. Biocatalysis and Agricultural Biotechnology, 45, 102517. https://doi.org/10.1016/j.bcab.2022.102517. ISSN 1878-8181.

    Article  CAS  Google Scholar 

  8. Glick, B. R. (2005). Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiology Letters, 251(1), 1–7. https://doi.org/10.1016/j.femsle.2005.07.030

    Article  CAS  PubMed  Google Scholar 

  9. Borriss, R. (2011). Use of plant-associated bacillus strains as biofertilizers and biocontrol agents in agriculture. In: Maheshwari, D. (eds), Bacteria in Agrobiology: Plant Growth Responses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20332-9_3

  10. Chaudhari, D. S., Dhotre, D. P., Jani, K., et al. (2020). Bacterial communities associated with the biofilms formed in high-altitude brackish water Pangong Tso located in the Himalayan plateau. Current Microbiology, 77, 4072–4084. https://doi.org/10.1007/s00284-020-02244-4

    Article  CAS  PubMed  Google Scholar 

  11. Maitra, D., Roy, B., Chandra, A., Choudhury, S. S., & Mitra, A. K. (2022). Biofilm producing Bacillus vallismortis TR01K from tea rhizosphere acting as plant growth promoting agent. Biocatalysis and Agricultural Biotechnology, 45, 102507. https://doi.org/10.1016/j.bcab.2022.102507. ISSN 1878-8181.

    Article  CAS  Google Scholar 

  12. Mekonnen, E., Kebede, A., Nigussie, A., Kebede, G., & Tafesse, M. (2021). Isolation and characterization of urease-producing soil bacteria”. International Journal of Microbiology, 2021(8888641), 11. https://doi.org/10.1155/2021/8888641

    Article  CAS  Google Scholar 

  13. Fahad, S., Hussain, S., Bano, A., Saud, S., Hassan, S., Shan, D., et al. (2015). Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: Consequences for changing environment. Environmental Science and Pollution Research, 22, 4907–4921. https://doi.org/10.1007/s11356-014-3754-2

    Article  PubMed  Google Scholar 

  14. Zannier, F., Portero, L. R., Ordoñez, O. F., Martinez, L. J., Farías, M. E., & Albarracin, V. H. (2019). Polyextremophilic bacteria from high altitude andean lakes: Arsenic resistance profiles and biofilm production. BioMed Research International, 2019(1231975), 11. https://doi.org/10.1155/2019/1231975

    Article  CAS  Google Scholar 

  15. Jha, C. K., & Saraf, M. (2011). In vitro evaluation of indigenous plant growth promoting rhizobacteria isolated from Jatropha curcas rhizosphere. International Journal of Genetic Engineering and Biotechnology, 2, 91–100.

    Google Scholar 

  16. Kasim, W. A., Gaafar, R. M., Abou-Ali, R. M., Omar, M. N., & Hewait, H. M. (2016). Effect of biofilm forming plant growth promoting rhizobacteria on salinity tolerance in barley. Annals of Agricultural Science, 61, 217–227.

    Article  Google Scholar 

  17. Mah, T. F., Pitts, B., Pellock, B., Walker, G. C., Stewart, P. S., & O’toole, G. A. (2003). A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature, 426, 306–310. https://doi.org/10.1038/nature02122

    Article  CAS  PubMed  Google Scholar 

  18. Malusá E, Sas-Paszt L, Ciesielska J. (2012). Technologies for beneficial microorganisms inocula used as biofertilizers. Scientific World Journal, 2012, 491206. https://doi.org/10.1100/2012/491206

  19. Yazdani, M., Bahmanyar, M.A., Pirdashti, H., & AliEsmaili, M. (2009). Effect of Phosphate Solubilization Microorganisms (PSM) and Plant Growth Promoting Rhizobacteria (PGPR) on Yield and Yield Components of Corn (Zea mays L.). World Academy of Science, Engineering and Technology, International Journal of Biological, Biomolecular, Agricultural, Food and Biotechnological Engineering, 3, 50–52.

  20. Pahari, A., Pradhan, A., Nayak, S.K., Mishra, B.B. (2017). Bacterial siderophore as a plant growth promoter. In: Patra, J., Vishnuprasad, C., Das, G. (eds), Microbial Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-10-6847-8_7

  21. Pandea, A., Kaushik, S., Pandey, P., & Negi, A. (2019). Isolation, characterization, and identification of phosphate-solubilizing Burkholderia cepacia from the sweet corn cv. Golden Bantam rhizosphere soil and effect on growth-promoting activities. International Journal of Vegetable Science. https://doi.org/10.1080/19315260.2019.1692121. Taylor & Francis.

    Article  Google Scholar 

  22. Pandit, A., Adholeya, A., Cahill, D., Brau, L., & Kochar, M. (2020). Microbial biofilms in nature: Unlocking their potential for agricultural applications. Journal of Applied Microbiology, 129(2), 199–211.

    Article  CAS  PubMed  Google Scholar 

  23. Radhakrishnan, M., Samshath, K. J., & Balagurunathan, R. (2014). Hydroxamate siderophore from Bacillus spSD12 isolated from iron factory soil. Current World Environment: An International Research Journal of Environmental Sciences, 9(3), 990–993.

    Article  Google Scholar 

  24. Reddy, E.C. et al. (2022). Hydrolytic enzyme producing Plant Growth-Promoting Rhizobacteria (PGPR) in plant growth promotion and biocontrol. In: Sayyed, R.Z., Uarrota, V.G. (eds), Secondary Metabolites and Volatiles of PGPR in Plant-Growth Promotion. Springer, Cham. https://doi.org/10.1007/978-3-031-07559-9_15

  25. Pii, Y., Mimmo, T., Tomasi, N., Terzano, R., Cesco, S., & Crecchio, C. (2015). Microbial interactions in the rhizosphere: Beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process. A review. Biology and Fertility of Soils, 51, 403–415. https://doi.org/10.1007/s00374-015-0996-1

    Article  CAS  Google Scholar 

  26. Santoyo, G., Orozco-Mosqueda, M. D., & Govindappa, M. (2012). Mechanisms of biocontrol and plant growth-promoting activity in soil bacterial species of Bacillus and Pseudomonas: A review. Biocontrol Science and Technology, 22, 855–872. https://doi.org/10.1016/j.micres.2008.08.007

    Article  CAS  Google Scholar 

  27. Schwyn, B., & Neilands, J. B. (1987). Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry, 160(1), 47–56. https://doi.org/10.1016/0003-2697(87)90612-9

    Article  CAS  PubMed  Google Scholar 

  28. Shaikh, S. S., Wani, S. J., & Sayyed, R. Z. (2018). Impact of interactions between rhizosphere and rhizobacteria: A review. Journal of Bacteriology and Mycology, 5, 1058.

    Google Scholar 

  29. Shivlata, L., Satyanarayana, T. (2017). Actinobacteria in agricultural and environmental sustainability. In: Singh, J., Seneviratne, G. (eds), Agro-Environmental Sustainability. Springer, Cham. https://doi.org/10.1007/978-3-319-49724-2_9

  30. Sivasakthi, S., Usharani, G., & Saranraj, P. (2014). Biocontrol potentiality of plant growth promoting bacteria (PGPR)-Pseudomonas fluorescens and Bacillus subtilis: A review. African Journal of Agricultural Research, 9, 1265–1277.

    Google Scholar 

  31. Subba Rao, N. S. (1977). Soil microorganisms and plant growth. Oxford and IBH Publishing Co.

    Google Scholar 

  32. Timmusk, S., Behers, L., Muthoni, J., Muraya, A., & Aronsson, A. C. (2017). Perspectives and challenges of microbial application for crop improvement. Frontiers in Plant Science, 8, 49. https://doi.org/10.3389/fpls.2017.00049

    Article  PubMed  PubMed Central  Google Scholar 

  33. Vessey, J. K. (2003). Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil, 255, 571–586. https://doi.org/10.1023/A:1026037216893

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bedaprana Roy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, B., Maitra, D., Biswas, A. et al. Efficacy of High-Altitude Biofilm-Forming Novel Bacillus subtilis Species as Plant Growth-Promoting Rhizobacteria on Zea mays L. Appl Biochem Biotechnol 196, 643–666 (2024). https://doi.org/10.1007/s12010-023-04563-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04563-1

Keywords

Navigation