Skip to main content
Log in

Expression, Purification, and Biological Evaluation of XTEN-GCSF in a Neutropenic Rat Model

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Granulocyte colony-stimulating factor (GCSF) stimulates the proliferation of neutrophils but it has low serum half-life. Therefore, the present study was done to investigate the effect of XTENylation on biological activity, pharmacokinetics, and pharmacodynamics of GCSF in a neutropenic rat model. XTEN tag was genetically fused to the N-terminal region of GCSF-encoding gene fragment and subcloned into pET28a expression vector. The cytoplasmic expressed recombinant protein was characterized through intrinsic fluorescence spectroscopy (IFS), dynamic light scattering (DLS), and size exclusion chromatography (SEC). In vitro biological activity of the XTEN-GCSF protein was evaluated on NFS60 cell line. Hematopoietic properties and pharmacokinetics were also investigated in a neutropenic rat model. An approximately 140 kDa recombinant protein was detected on SDS-PAGE. Dynamic light scattering and size exclusion chromatography confirmed the increase in hydrodynamic diameter of GCSF molecule after XTENylation. GCSF derivatives showed efficacy in proliferation of NFS60 cell line among which the XTEN-GCSF represented the lowest EC50 value (100.6 pg/ml). Pharmacokinetic studies on neutropenic rats revealed that XTEN polymer could significantly increase protein serum half-life in comparison with the commercially available GCSF molecules. PEGylated and XTENylated GCSF proteins were more effective in stimulation of neutrophils compared to the GCSF molecule alone. XTENylation of GCSF represented promising results in in vitro and in vivo studies. This approach can be a potential alternative to PEGylation strategies for increasing serum half-life of protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Lyman, G. H., Abella, E., & Pettengell, R. (2014). Risk factors for febrile neutropenia among patients with cancer receiving chemotherapy: A systematic review. Critical Reviews in Oncology/Hematology, 90, 190–199.

  2. Newburger, P. E., & Dale, D. C. (2013). Evaluation and management of patients with isolated neutropenia. Seminars in Hematology, 50, 198–206.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Schneider, A., Kuhn, H. G., & Schabitz, W. R. (2005). A role for G-CSF (granulocyte-colony stimulating factor) in the central nervous system. Cell Cycle, 4, 1753–1757.

    Article  CAS  PubMed  Google Scholar 

  4. Dwivedi, P., & Greis, K. D. (2017). Granulocyte colony-stimulating factor receptor signaling in severe congenital neutropenia, chronic neutrophilic leukemia, and related malignancies. Experimental Hematolology, 46, 9–20.

    Article  CAS  Google Scholar 

  5. Pollmächer, T., Korth, C., Schreiber, W., Hermann, D., & Mullington, J. (1996). Effects of repeated administration of granulocyte colony-stimulating factor (G-CSF) on neutrophil counts, plasma cytokine, and cytokine receptor levels. Cytokine, 8, 799–803.

    Article  PubMed  Google Scholar 

  6. Kumari, M., Sahni, G., & Datta, S. (2020). Development of site-specific PEGylated granulocyte colony stimulating factor with prolonged biological activity. Frontiers in Bioengineering and Biotechnology, 8, 572077.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zhao, S., Zhang, Y., Tian, H., Chen, X., Cai, D., Yao, W., & Gao, X. (2013). Extending the serum half-life of G-CSF via fusion with the domain III of human serum albumin. BioMed Research International, 2013, 107238.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Do, B. H., Kang, H. J., Song, J-A., Nguyen, M. T., Park, S., Yoo, J., Nguyen, A. N., Kwon, G. G., Jang, J., Jang, J., Lee, S., So, S., Sim, S., Lee, K. J., Osborn, M. J., & Choe, H. (2017). Granulocyte colony-stimulating factor (GCSF) fused with Fc domain produced from E. coli is less effective than polyethylene glycol-conjugated GCSF. Scientific Reports, 7, 6480.

  9. Tanaka, H., Satake-Ishikawa, R., Ishikawa, M., Matsuki, S., & Asano, K. (1991). Pharmacokinetics of recombinant human granulocyte colony-stimulating factor conjugated to polyethylene glycol in rats. Cancer Research, 51, 3710–3714.

    CAS  PubMed  Google Scholar 

  10. Halpern, W., Riccobene, T. A., Agostini, H., Baker, K., Stolow, D., Gu, M. L., Hirsch, J., Mahoney, A., Carrell, J., Boyd, E., & Grzegorzewski, K. J. (2002). Albugranin™, a recombinant human granulocyte colony stimulating factor (G-CSF) genetically fused to recombinant human albumin induces prolonged myelopoietic effects in mice and monkeys. Pharmaceutical Research, 19, 1720–1729.

    Article  CAS  PubMed  Google Scholar 

  11. van der Auwera, P., Platzer, E., Xu, Z. X., Schulz, R., Feugeas, O., Capdeville, R., & Edwards, D. J. (2001). Pharmacodynamics and pharmacokinetics of single doses of subcutaneous pegylated human G-CSF mutant (Ro 25–8315) in healthy volunteers: Comparison with single and multiple daily doses of filgrastim. American Journal of Hematolology., 66, 245–251.

    Article  Google Scholar 

  12. Strohl, W. R. (2015). Fusion proteins for half-life extension of biologics as a strategy to make biobetters. BioDrugs. 29, 215–239.

  13. Bendele, A., Seely, J., Richey, C., Sennello, G., & Shopp, G. (1998). Short communication: Renal tubular vacuolation in animals treated with polyethylene-glycol-conjugated proteins. Toxicological Sciences, 42, 152–157.

    Article  CAS  PubMed  Google Scholar 

  14. He, X., Yin, H. L., Wu, J., Zhang, K., Liu, Y., Yuan, T., Rao, H. L., Li, L., Yang, G., & Zhang, X. M. (2011). A multiple-dose pharmacokinetics of polyethylene glycol recombinant human interleukin-6 (PEG-rhIL-6) in rats. Journal of Zhejiang University Scieince B, 12, 32–39.

    Article  CAS  Google Scholar 

  15. Schlapschy, M., Binder, U., Borger, C., Theobald, I., Wachinger, K., Kisling, S., Haller, D., & Skerra, A. (2013). PASylation: A biological alternative to PEGylation for extending the plasma half-life of pharmaceutically active proteins. Protein Engineering Design and Selection, 26, 489–501.

    Article  CAS  Google Scholar 

  16. Mazaheri, S., Talebkhan, Y., Mahboudi, F., Nematollahi, L., Cohan, R. A., MirabzadehArdakani, E., Bayat, E., Sabzalinejad, M., Sardari, S., & Torkashvand, F. (2020). Improvement of certolizumab fab′ properties by PASylation technology. Scientific Reports, 10, 18464.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  17. Bech, E. M., Pedersen, S. L., & Jensen, K. J. (2018). Chemical strategies for half-life extension of biopharmaceuticals: Lipidation and its alternatives. ACS Medicinal Chemistry Letters, 9, 577–580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ding, S., Song, M., Sim, B.-C., Gu, C., Podust, V. N., Wang, C.-W., McLaughlin, B., Shah, T. P., Lax, R., Gast, R., Sharan, R., Vasek, A., Hartman, M. A., Deniston, C., Srinivas, P., & Schellenberger, V. (2014). Multivalent antiviral XTEN–Peptide conjugates with long in vivo half-life and enhanced solubility. Bioconjugate Chemistry, 25, 1351–1359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Geething, N. C., To, W., Spink, B. J., Scholle, M. D., Wang, C., Yin, Y., Yao, Y., Schellenberger, V., Cleland, J. L., Stemmer, W. P. C., & Silverman, J. (2010). Gcg-XTEN: An improved glucagon capable of preventing hypoglycemia without increasing baseline blood glucose. PLoS One, 5,

  20. Podust, V. N., Balan, S., Sim, B.-C., Coyle, M. P., Ernst, U., Peters, R. T., & Schellenberger, V. (2016). Extension of in vivo half-life of biologically active molecules by XTEN protein polymers. Journal of Controlled Release, 240, 52–66.

    Article  CAS  PubMed  Google Scholar 

  21. Schellenberger, V., Wang, C., Geething, N. C., Spink, B. J., Campbell, A., To, W., Scholle, M. D., Yin, Y., Yao, Y., Bogin, O., Cleland, L., Silverman, J., & Stemmer, W. P. C. (2009). A recombinant polypeptide extends the in vivo half-life of peptides and proteins in a tunable manner. Nature Biotechnology, 27, 1186–1190.

    Article  CAS  PubMed  Google Scholar 

  22. Varanko, A., Saha, S., & Chilkoti, A. (2020). Recent trends in protein and peptide-based biomaterials for advanced drug delivery. Advanced Drug Delivery Reviews, 156, 133–187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Alters, S. E., McLaughlin, B., Spink, B., Lachinyan, T., Wang, C., Podust, V., Schellenberger, V., & Stemmer, W. P. C. (2012). GLP2-2G-XTEN: A pharmaceutical protein with improved serum half-life and efficacy in a rat Crohn’s disease model. PLoS One, 7,

  24. Amatya, R., Park, T., Hwang, S., Yang, J., Lee, Y., Cheong, H., Moon, C., Kwak, H. D., Min, K. A., & Shin, M. C. (2020). Drug delivery strategies for enhancing the therapeutic efficacy of toxin-derived anti-diabetic peptides. Toxins, 12, 313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Moore, W. V., Nguyen, H. J., Kletter, G. B., Miller, B. S., Rogers, D., Ng, D., Moore, J. A., Humphriss, E., Cleland, J. L., & Bright, G. M. (2016). A randomized safety and efficacy study of somavaratan (VRS-317), a long-acting rhGH, in pediatric growth hormone deficiency. The Journal of Clinical Endocrinology and Metabolism, 101, 1091–1097.

    Article  CAS  PubMed  Google Scholar 

  26. NICE. Neutropenic sepsis : Prevention and management in people with cancer. NICE Guidel. 2012;1–31.

  27. Zamboni, W. C. (2003). Pharmacokinetics of pegfilgrastim. Pharmacotherapy, 23, 9S-14S.

    Article  CAS  PubMed  Google Scholar 

  28. Rosano, G. L., & Ceccarelli, E. A. (2014). Recombinant protein expression in Escherichia coli: Advances and challenges. Frontiers in Microbiology, 5, 172.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Baeshen, M. N., Al-Hejin, A. M., Bora, R. S., Ahmed, M. M. M., Ramadan, H. A. I., Saini, K. S., Baeshen, N. A., & Redwan, E. M. (2015). Production of biopharmaceuticals in E. coli: Current scenario and future perspectives. Journal of Microbiology and Biotechnology, 25, 953–962.

    Article  CAS  PubMed  Google Scholar 

  30. Tryggvason, K., & Wartiovaara, J. (2005). How does the kidney filter plasma? Physiology, 20, 96–101.

    Article  PubMed  Google Scholar 

  31. Hagel, L. (1998). in Current protocols in molecular biology: Gel-filtration chromatography. Wiley, New York, pp. 10.9.1–10.9.2.

  32. Mickiene, G., Dalgediene, I., Dapkunas, Z., Zvirblis, G., Pesliakas, H., Kaupinis, A., Valius, M., Mistiniene, E., & Pleckaityte, M. (2017). Construction, purification, and characterization of a homodimeric granulocyte colony-stimulating factor. Molecular Biotechnology, 59, 374–384.

    Article  CAS  PubMed  Google Scholar 

  33. Ghisaidoobe, A., & Chung, S. J. (2014). Intrinsic tryptophan fluorescence in the detection and analysis of proteins: A focus on Förster resonance energy transfer techniques. International Journal of Molecular Sciences, 15, 22518–22538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lakowicz, J. R. (2006). in Principles of fluorescence spectroscopy (pp. 529–579). Springer.

    Google Scholar 

  35. Koenig, S., Müller, L., & Smith, D. K. (2001). Dendritic biomimicry: Microenvironmental hydrogen-bonding effects on tryptophan fluorescence. Chemistry, 7, 979–986.

    Article  CAS  PubMed  Google Scholar 

  36. Huang, Y.-S., Wen, X.-F., Yang, Z.-Y., Wu, Y.-L., Lu, Y., & Zhou, L.-F. (2014). Development and characterization of a novel fusion protein of a mutated granulocyte colony-stimulating factor and human serum albumin in Pichia pastoris. PLoS One, 9,

  37. Mero, A., Grigoletto, A., Maso, K., Yoshioka, H., Rosato, A., & Pasut, G. (2016). Site-selective enzymatic chemistry for polymer conjugation to protein lysine residues: PEGylation of G-CSF at lysine-41. Polymer Chemistry, 7, 6545–6553.

    Article  CAS  Google Scholar 

  38. Stetefeld, J., McKenna, S. A., & Patel, T. R. (2016). Dynamic light scattering: A practical guide and applications in biomedical sciences. Biophysical Reviews, 8, 409–427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wadhwa, M., Bird, C., Dougall, T., Rigsby, P., Bristow, A., Thorpe, R., & participants of the study. (2015). Establishment of the first international standard for PEGylated granulocyte colony stimulating factor (PEG-G-CSF): Report of an international collaborative study. Journal of Immunological Methods, 416, 17–28.

  40. Kang, J. S., & Lee, K. C. (2013). In vivo pharmacokinetics and pharmacodynamics of positional isomers of mono-PEGylated recombinant human granulocyte colony stimulating factor in rats. Biological & Pharmaceutical Bulletin, 36, 1146–1151.

    Article  CAS  Google Scholar 

  41. Mehta, H. M., Malandra, M., & Corey, S. J. (2015). G-CSF and GM-CSF in neutropenia. The Journal of Immunology, 195, 1341–1349.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to express their deep gratitude to all who provided deep technical supports.

Funding

This project was supported by Pasteur Institute of Iran and the Biotechnology Development Headquarter of the Vice-Presidency for Science & Technology, Tehran, Iran.

Author information

Authors and Affiliations

Authors

Contributions

YT, LN, and YHA: Design the study and revise of the manuscript. FYN: Major experimental work, data analysis, and contribution in writing the manuscript. PGh, EB, ShD, and HAMA: Contribution in experimental work. EM: Contribution in animal studies.

Corresponding authors

Correspondence to Yeganeh Talebkhan or Yalda Hosseinzadeh Ardakani.

Ethics declarations

Ethics Approval

All experiments and procedures were approved by the Ethics Committee of Pasteur Institute of Iran (IR.PII.REC.1399.013) and performed in accordance with the approved guidelines and regulations.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Fig. S1

Western blotting using HRP conjugated rabbit anti-His antibody. #1, 2: Recombinant E. coli cell lysates before and after induction; #3, 4: Purified XTEN-GCSF samples; M: Pre-stained protein molecular weight marker. (PNG 88 kb)

High resolution image (TIF 153 kb)

Fig. S2

Dynamic light scattering histogram. Assessment of the size of GCSF derivatives. (PNG 760 kb)

Fig. S3

Blood counting of rats received single doses of GCSF derivatives. (a) Filgrastim; (b) PEG-Filgrastim; (c) XTEN-GCSF. Data are means ± SE SD of 3 random rats/group on a linear scale. Bars represent the SD values. (PNG 17 kb)

(PNG 19 kb)

High resolution image (TIFF 160 kb)

High resolution image (TIFF 170 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikravesh, F.Y., Gholami, P., Bayat, E. et al. Expression, Purification, and Biological Evaluation of XTEN-GCSF in a Neutropenic Rat Model. Appl Biochem Biotechnol 196, 804–820 (2024). https://doi.org/10.1007/s12010-023-04522-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04522-w

Keywords

Navigation