Skip to main content
Log in

In Silico and In Vitro Investigation of Phytochemicals Against Shrimp AHPND Syndrome Causing PirA/B Toxins of Vibrio parahaemolyticus

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In Southeast Asia, the penaeid shrimp aquaculture production faces a new pandemic bacterial disease called acute hepatopancreatic necrosis disease (AHPND). The highly profitable pacific white shrimp, Litopenaeus vannamei, has become a challenging species due to severe lethal infections. Recent research has identified a critical pathogen, Vibrio parahaemolyticus, which caused significant loss in the shrimp industry. The disease pathway involves a virulence plasmid encoding binary protein toxins (PirA/B) that cause cell death. The protein toxins were inherited and conjugatively transferred to other Vibrio species through a post-segregational killing system. In this study, “in silico” (Glide, 2021) analysis identified four phytocompounds as myricetin (Myr), ( +)-taxifolin (TF), (-)-epigallocatechin gallate (EGCG), and strychnine (STN) which could be most effective against both the toxins concerning its docking score and affinity. The interactions of complexes and the critical amino acids involved in docking were analyzed using the Discovery Studio (version 2016). Molecular dynamic studies showed lower root mean square deviations (RMSD) and improved stabilization of ( +)-taxifolin (TF) and (-)-epigallocatechin-3-gallate (EGCG) against both the protein toxins. The antibacterial potential of all four selected compounds had tested against pathogenic strains of V. parahaemolyticus through minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). The best MBC results were observed at concentrations of 1 mg/mL for EGCG and 1.25 mg/mL for TF. Moreover, the complete reduction of viable cell counts in the in vitro bactericidal activity had recorded after 24 h of incubation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Sony, M., Sumithra, T. G., Anusree, V. N., Amala, P. V., Reshma, K. J., Alex, S., & Sanil, N. K. (2021). Antimicrobial resistance and virulence characteristics of Vibrio vulnificus, Vibrio parahaemolyticus and Vibrio harveyi from natural disease outbreaks of marine/estuarine fishes. Aquaculture, 539, 736608.

    Article  CAS  Google Scholar 

  2. Silvester, R., Alexander, D., & Ammanamveetil, M. H. A. (2015). Prevalence, antibiotic resistance, virulence and plasmid profiles of Vibrio parahaemolyticus from a tropical estuary and adjoining traditional prawn farm along the southwest coast of India. Annals of microbiology, 65(4), 2141–2149.

    Article  CAS  Google Scholar 

  3. Siddique, A. B., Moniruzzaman, M., Ali, S., Dewan, M. N., Islam, M. R., Islam, M. S., & Mahmud, Z. H. (2021). Characterization of pathogenic Vibrio parahaemolyticus isolated from fish aquaculture of the Southwest coastal area of Bangladesh. Frontiers in Microbiology, 12, 635539.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Albuquerque Costa, R., Araujo, R. L., Souza, O. V., & Vieira, R. H. S. D. F. (2015). Antibiotic-resistant Vibrios in farmed shrimp. BioMed Research International. 2015.

  5. Letchumanan, V., Yin, W. F., Lee, L. H., & Chan, K. G. (2015). Prevalence and antimicrobial susceptibility of Vibrio parahaemolyticu s isolated from retail shrimps in Malaysia. Frontiers in Microbiology, 6, 33.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Yang, Y., Xie, J., Li, H., Tan, S., Chen, Y., & Yu, H. (2017). Prevalence, antibiotic susceptibility and diversity of Vibrio parahaemolyticus isolates in seafood from South China. Frontiers in microbiology, 8, 2566.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Muthukrishnan, S., Defoirdt, T., Shariff, M., Yusoff, F. M., & Natrah, I. (2019). Horizontal gene transfer of the pirAB genes responsible for acute hepatopancreatic necrosis disease (AHPND) turns a non-Vibrio strain into an AHPND-positive pathogen. BioRxiv.

  8. Xiao, J., Liu, L., Ke, Y., Li, X., Liu, Y., Pan, Y., & Wang, Y. (2017). Shrimp AHPND-causing plasmids encoding the PirAB toxins as mediated by pirAB-Tn903 are prevalent in various Vibrio species. Scientific Reports, 7(1), 1–11.

    Google Scholar 

  9. Gomez-Gil, B., Soto-Rodríguez, S., Lozano, R., & Betancourt-Lozano, M. (2014). Draft genome sequence of Vibrio parahaemolyticus strain M0605, which causes severe mortalities of shrimps in Mexico. Genome Announcements, 2(2), e00055-e114.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Nunan, L., Lightner, D., Pantoja, C., & Gomez-Jimenez, S. (2014). Detection of acute hepatopancreatic necrosis disease (AHPND) in Mexico. Diseases of aquatic organisms, 111(1), 81–86.

    Article  CAS  PubMed  Google Scholar 

  11. Theethakaew, C., Nakamura, S., Motooka, D., Matsuda, S., Kodama, T., Chonsin, K., & Iida, T. (2017). Plasmid dynamics in Vibrio parahaemolyticus strains related to shrimp acute hepatopancreatic necrosis syndrome (AHPNS). Infection, Genetics and Evolution, 51, 211–218.

    Article  CAS  PubMed  Google Scholar 

  12. Tran, L., Nunan, L., Redman, R. M., Mohney, L. L., Pantoja, C. R., Fitzsimmons, K., & Lightner, D. V. (2013). Determination of the infectious nature of the agent of acute hepatopancreatic necrosis syndrome affecting penaeid shrimp. Diseases of aquatic organisms, 105(1), 45–55.

    Article  PubMed  Google Scholar 

  13. Sriurairatana, S., Boonyawiwat, V., Gangnonngiw, W., Laosutthipong, C., Hiranchan, J., & Flegel, T. W. (2014). White feces syndrome of shrimp arises from transformation, sloughing and aggregation of hepatopancreatic microvilli into vermiform bodies superficially resembling gregarines. PLoS One, 9(6), e99170.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Yang, Y. T., Chen, I. T., Lee, C. T., Chen, C. Y., Lin, S. S., Hor, L. I., & Lo, C. F. (2014). Draft genome sequences of four strains of Vibrio parahaemolyticus, three of which cause early mortality syndrome/acute hepatopancreatic necrosis disease in shrimp in China and Thailand. Genome Announcements, 2(5), e00816-e914.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Han, J. E., Tang, K. F., Tran, L. H., & Lightner, D. V. (2015). Photorhabdus insect-related (Pir) toxin-like genes in a plasmid of Vibrio parahaemolyticus, the causative agent of acute hepatopancreatic necrosis disease (AHPND) of shrimp. Diseases of aquatic organisms, 113(1), 33–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lee, C. T., Chen, I. T., Yang, Y. T., Ko, T. P., Huang, Y. T., Huang, J. Y., & Lo, C. F. (2015). The opportunistic marine pathogen Vibrio parahaemolyticus becomes virulent by acquiring a plasmid that expresses a deadly toxin. Proceedings of the National Academy of Sciences, 112(34), 10798–10803.

    Article  CAS  Google Scholar 

  17. Tinh, T. H., Elayaraja, S., Mabrok, M., Gallantiswara, P. C. D., Vuddhakul, V., & Rodkhum, C. (2021). Antibacterial spectrum of synthetic herbal-based polyphenols against Vibrio parahaemolyticus isolated from diseased Pacific whiteleg shrimp (Penaeus vannamei) in Thailand. Aquaculture, 533, 736070.

    Article  CAS  Google Scholar 

  18. Kondo, H., Tinwongger, S., Proespraiwong, P., Mavichak, R., Unajak, S., Nozaki, R., & Hirono, I. (2014). Draft genome sequences of six strains of Vibrio parahaemolyticus isolated from early mortality syndrome/acute hepatopancreatic necrosis disease shrimp in Thailand. Genome announcements, 2(2), e00221-e314.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lai, H. C., Ng, T. H., Ando, M., Lee, C. T., Chen, I. T., Chuang, J. C., & Wang, H. C. (2015). Pathogenesis of acute hepatopancreatic necrosis disease (AHPND) in shrimp. Fish and Shellfish Immunology, 47(2), 1006–1014.

    Article  CAS  PubMed  Google Scholar 

  20. Hengphasatporn, K., Garon, A., Wolschann, P., Langer, T., Yasuteru, S., Huynh, T. N., & Rungrotmongkol, T. (2020). Multiple virtual screening strategies for the discovery of novel compounds active against dengue virus: A hit identification study. Scientia pharmaceutica, 88(1), 2.

    Article  CAS  Google Scholar 

  21. Harborne, J. B., & Williams, C. A. (2000). Advances in flavonoid research since 1992. Phytochemistry, 55(6), 481–504.

    Article  CAS  PubMed  Google Scholar 

  22. Xie, Y., Yang, W., Tang, F., Chen, X., & Ren, L. (2015). Antibacterial activities of flavonoids: Structure-activity relationship and mechanism. Current medicinal chemistry, 22(1), 132–149.

    Article  CAS  PubMed  Google Scholar 

  23. Asmi, K. S., Lakshmi, T., Balusamy, S. R., & Parameswari, R. (2017). Therapeutic aspects of taxifolin–An update. Journal of Advanced Pharmacy Education & Research Jul-Sep, 7(3).

  24. Rice-Evans, C. A., Miller, N. J., & Paganga, G. (1996). Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free radical biology and medicine, 20(7), 933–956.

    Article  CAS  PubMed  Google Scholar 

  25. Singh, B. N., Shankar, S., & Srivastava, R. K. (2011). Green tea catechin, epigallocatechin-3-gallate (EGCG): Mechanisms, perspectives and clinical applications. Biochemical pharmacology, 82(12), 1807–1821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shimizu, M., Shirakami, Y., Sakai, H., Tatebe, H., Nakagawa, T., Hara, Y., & Moriwaki, H. (2008). EGCG inhibits activation of the insulin-like growth factor (IGF)/IGF-1 receptor axis in human hepatocellular carcinoma cells. Cancer letters, 262(1), 10–18.

    Article  CAS  PubMed  Google Scholar 

  27. Maruca, A., Lanzillotta, D., Rocca, R., Lupia, A., Costa, G., Catalano, R., & Alcaro, S. (2020). Multi-targeting bioactive compounds extracted from essential oils as kinase inhibitors. Molecules, 25(9), 2174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liang, F., Sun, C., Li, S., Hou, T., & Li, C. (2021). Therapeutic effect and immune mechanism of chitosan-gentamicin conjugate on Pacific white shrimp (Litopenaeus vannamei) infected with Vibrio parahaemolyticus. Carbohydrate Polymers, 269, 118334.

    Article  CAS  PubMed  Google Scholar 

  29. Rajagopal, K., Byran, G., Jupudi, S., & Vadivelan, R. (2020). Activity of phytochemical constituents of black pepper, ginger, and garlic against coronavirus (COVID-19): An in silico approach. International Journal of Health and Allied Sciences, 9(5), 43–50.

    Article  Google Scholar 

  30. Ferruzzi, M. G. (2010). The influence of beverage composition on delivery of phenolic compounds from coffee and tea. Physiology and Behavior, 100(1), 33–41.

    Article  CAS  PubMed  Google Scholar 

  31. Islam, M. A., & Pillay, T. S. (2016). Structural requirements for potential HIV-integrase inhibitors identified using pharmacophore-based virtual screening and molecular dynamics studies. Molecular Biosystems, 12(3), 982–993.

    Article  CAS  PubMed  Google Scholar 

  32. Sajid Jamal, Q. M., Alharbi, A. H., & Ahmad, V. (2021). Identification of doxorubicin as a potential therapeutic against SARS-CoV-2 (COVID-19) protease: A molecular docking and dynamics simulation studies. Journal of Biomolecular Structure and Dynamics, 1–15.

  33. Puratchikody, A., Sriram, D., Umamaheswari, A., & Irfan, N. (2016). 3-D structural interactions and quantitative structural toxicity studies of tyrosine derivatives intended for safe potent inflammation treatment. Chemistry Central Journal, 10(1), 1–19.

    Article  Google Scholar 

  34. Hasan, M., Azim, K. F., Imran, M. A. S., Chowdhury, I. M., Urme, S. R. A., Parvez, M. S. A., & Ahmed, S. S. U. (2020). Comprehensive genome based analysis of Vibrio parahaemolyticus for identifying novel drug and vaccine molecules: Subtractive proteomics and vaccinomics approach. PloS one, 15(8), e0237181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. May, A., & Zacharias, M. (2008). Energy minimization in low-frequency normal modes to efficiently allow for global flexibility during systematic protein–protein docking. Proteins: Structure, Function, and Bioinformatics, 70(3), 794–809.

    Article  CAS  Google Scholar 

  36. Ramalingam, K., & Amaechi, B. T. (2020). Antimicrobial effect of herbal extract of Acacia arabica with triphala on the biofilm forming cariogenic microorganisms. Journal of Ayurveda and Integrative Medicine, 11(3), 322–328.

    Article  PubMed  Google Scholar 

  37. Aranguren Caro, L. F., Mai, H. N., Cruz-Florez, R., Marcos, F. L. A., Alenton, R. R. R., & Dhar, A. K. (2021). Experimental reproduction of White Feces Syndrome in whiteleg shrimp Penaeus vannamei. PloS one, 16(12), e0261289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Khan, M. H., Unnikrishnan, S., & Ramalingam, K. (2019). Bactericidal potential of silver-tolerant bacteria derived silver nanoparticles against multi drug resistant ESKAPE pathogens. Biocatalysis and Agricultural Biotechnology, 18, 100939.

    Article  Google Scholar 

  39. Roche, O., Kiyama, R., & Brooks, C. L. (2001). Ligand− protein database: Linking protein− ligand complex structures to binding data. Journal of medicinal chemistry, 44(22), 3592–3598.

    Article  CAS  PubMed  Google Scholar 

  40. Cavasotto, C. N. (2020). Binding free energy calculation using quantum mechanics aimed for drug lead optimization. Quantum mechanics in drug discovery, 257–268

  41. Ferreira, L. G., Dos Santos, R. N., Oliva, G., & Andricopulo, A. D. (2015). Molecular docking and structure-based drug design strategies. Molecules, 20(7), 13384–13421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kumar, V., Bels, L. D., Couck, L., Baruah, K., Bossier, P., & Broeck, W. V. D. (2019). PirABVP toxin binds to epithelial cells of the digestive tract and produce pathognomonic AHPND lesions in germ-free brine shrimp. Toxins, 11(12), 717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. De Guia, A. C. M., Samson, J. S., & Uy, M. R. D. (2020). In silico analysis of PirA-and PirB-like toxin genes of Vibrio spp., present in Asia and Costa Rica. Journal of Advanced Veterinary and Animal Research, 7(2), 320.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Li, Y., Hu, X., Zhang, X., Liu, Z., Ding, X., Xia, L., & Hu, S. (2014). Photorhabdus luminescens PirAB-fusion protein exhibits both cytotoxicity and insecticidal activity. FEMS microbiology letters, 356(1), 23–31.

    Article  CAS  PubMed  Google Scholar 

  45. Górniak, I., Bartoszewski, R., & Króliczewski, J. (2019). Comprehensive review of antimicrobial activities of plant flavonoids. Phytochemistry Reviews, 18(1), 241–272.

    Article  Google Scholar 

  46. Darko, L. K., Broni, E., Amuzu, D. S., Wilson, M. D., Parry, C. S., & Kwofie, S. K. (2021). Computational study on potential novel anti-Ebola virus protein VP35 natural compounds. Biomedicines, 9(12), 1796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bylka, W., Matlawska, I., & Pilewski, N. A. (2004). Natural flavonoids as antimicrobial agents. Jana, 7(2), 24–31.

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the institute, B. S. Abdur Rahman Crescent Institute of Science and Technology, for supporting this research.

Funding

This research was supported by the Indian Council of Medical Research (Project ID: 2020–4964) and Ayurveda, Yoga and Naturopathy, Unani, Siddha and Homoeopathy (AYUSH), India (28015/209/2015-HPC).

Author information

Authors and Affiliations

Authors

Contributions

Jahangir Ahmed: data curation, formal analysis, investigation, methodology, writing—original draft. Sneha Unnikrishnan: data curation, formal analysis, investigation, writing—original draft. Irfan Navabshan: conceptualization, formal analysis, investigation, methodology. Logesh Radhakrishnan: conceptualization, dynamic analysis, molecular dynamic simulation. Kumaraguru Vasagam: conceptualization, investigation, data curation, formal analysis. Karthikeyan Ramalingam: conceptualization, supervision; validation; writing—review and editing.

Corresponding author

Correspondence to Karthikeyan Ramalingam.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 254 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, J., Navabshan, I., Unnikrishnan, S. et al. In Silico and In Vitro Investigation of Phytochemicals Against Shrimp AHPND Syndrome Causing PirA/B Toxins of Vibrio parahaemolyticus. Appl Biochem Biotechnol 195, 7176–7196 (2023). https://doi.org/10.1007/s12010-023-04458-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04458-1

Keywords

Navigation