Skip to main content

Advertisement

Log in

Epidural Administration of Curcumin-Loaded Polycaprolactone/Gelatin Electrospun Nanofibers for Extended Analgesia After Laminectomy in Rats

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Several clinical studies have reported the analgesic effect of curcumin (Curc) in various situations such as rheumatoid arthritis, osteoarthritis, and postsurgical pain. Therefore, in this work, Curc-loaded electrospun nanofibers (NFs) are designed to evaluate their sustained release on analgesic effect duration in rats after epidural placement via repeated formalin and tail-flick tests. The Curc-loaded polycaprolactone/gelatin NFs (Curc-PCL/GEL NFs) are prepared through an electrospinning technique and introduced to the rat’s epidural space after laminectomy. The physicochemical and morphology features of the prepared Curc-PCL/GEL NFs were characterized via FE-SEM, FTIR, and degradation assay. The in vitro and in vivo concentrations of Curc were measured to evaluate the analgesic efficacy of the drug-loaded NFs. Rat nociceptive responses are investigated through repeated formalin and tail-flick tests for 5 weeks after the placement of NFs. Curc had a sustained release from the NFs for 5 weeks, and its local pharmaceutical concentrations were much greater than plasma concentrations. Rat’s pain scores in both early and late phases of the formalin test were remarkably decreased in the experimental period. Rat’s tail-flick latency was remarkably enhanced and remained constant for up to 4 weeks. Our findings show that the Curc-PCL/GEL NFs can supply controlled release of Curc to induce extended analgesia after laminectomy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

References

  1. Wang, Y., Li, L., Ma, Y., Tang, Y., Zhao, Y., Li, Z., et al. (2020). Multifunctional supramolecular hydrogel for prevention of epidural adhesion after laminectomy. ACS Nano, 14(7), 8202–8219.

    Article  PubMed  CAS  Google Scholar 

  2. Peene, L., Le Cacheux, P., Sauter, A. R., Joshi, G. P., & Beloeil, H. (2021). Pain management after laminectomy: A systematic review and procedure-specific post-operative pain management (prospect) recommendations. European Spine Journal., 30(10), 2925–2935.

    Article  PubMed  Google Scholar 

  3. Foley, P. L., Liang, H., & Crichlow, A. R. (2011). Evaluation of a sustained-release formulation of buprenorphine for analgesia in rats. Journal of the American Association for Laboratory Animal Science., 50(2), 198–204.

    PubMed  PubMed Central  CAS  Google Scholar 

  4. Mishra, L., Nath, S., Gairola, R., Verma, R., & Mohanty, S. (2004). Buprenorphine-soaked absorbable gelatin sponge: An alternative method for postlaminectomy pain relief. Journal of Neurosurgical Anesthesiology., 16(2), 115–121.

    Article  PubMed  CAS  Google Scholar 

  5. Tseng, Y.-Y., Liao, J.-Y., Chen, W.-A., Kao, Y.-C., & Liu, S.-J. (2014). Biodegradable poly ([D, L]-lactide-co-glycolide) nanofibers for the sustainable delivery of lidocaine into the epidural space after laminectomy. Nanomedicine, 9(1), 77–87.

    Article  PubMed  CAS  Google Scholar 

  6. Eke-Okoro, U., Raffa, R., Pergolizzi Jr, J., Breve, F., Taylor Jr, R., Group NR. (2018). Curcumin in turmeric: basic and clinical evidence for a potential role in analgesia. Journal of Clinical Pharmacy and Therapeutics, 43(4), 460–466.

  7. Gulsun, T., Inal, M., Akdag, Y., Izat, N., Oner, L., & Sahin, S. (2022). The development and characterization of electrospun gelatin nanofibers containing indomethacin and curcumin for accelerated wound healing. Journal of Drug Delivery Science and Technology., 67, 103000.

    Article  CAS  Google Scholar 

  8. Pirmoradi, S., Fathi, E., Farahzadi, R., Pilehvar-Soltanahmadi, Y., & Zarghami, N. (2018). Curcumin affects adipose tissue-derived mesenchymal stem cell aging through TERT gene expression. Drug Research., 68(04), 213–221.

    Article  PubMed  CAS  Google Scholar 

  9. Rasouli, S., Montazeri, M., Mashayekhi, S., Sadeghi-Soureh, S., Dadashpour, M., Mousazadeh, H., et al. (2020). Synergistic anticancer effects of electrospun nanofiber-mediated codelivery of curcumin and chrysin: Possible application in prevention of breast cancer local recurrence. Journal of Drug Delivery Science and Technology., 55, 101402.

    Article  CAS  Google Scholar 

  10. Wei, W., Zarghami, N., Abasi, M., Ertas, Y. N., & Pilehvar, Y. (2022). Implantable magnetic nanofibers with ON–OFF switchable release of curcumin for possible local hyperthermic chemotherapy of melanoma. Journal of Biomedical Materials Research Part A., 110(4), 851–860.

    Article  PubMed  CAS  Google Scholar 

  11. Mohebian, Z., Babazadeh, M., Zarghami, N., & Mousazadeh, H. (2021). Anticancer efficiency of curcumin-loaded mesoporous silica nanoparticles/nanofiber composites for potential postsurgical breast cancer treatment. Journal of Drug Delivery Science and Technology., 61, 102170.

    Article  CAS  Google Scholar 

  12. Samadzadeh, S., Babazadeh, M., Zarghami, N., Pilehvar-Soltanahmadi, Y., & Mousazadeh, H. (2021). An implantable smart hyperthermia nanofiber with switchable, controlled and sustained drug release: Possible application in prevention of cancer local recurrence. Materials Science and Engineering: C., 118, 111384.

    Article  PubMed  CAS  Google Scholar 

  13. Tseng, Y.-Y., & Liu, S.-J. (2015). Nanofibers used for the delivery of analgesics. Nanomedicine, 10(11), 1785–1800.

    Article  PubMed  CAS  Google Scholar 

  14. Yosefifard, M., & Hassanpour-Ezatti, M. (2014). Epidural administration of neostigmine-loaded nanofibers provides extended analgesia in rats. DARU Journal of Pharmaceutical Sciences., 22(1), 1–10.

    Article  Google Scholar 

  15. Pourpirali, R., Mahmoudnezhad, A., Oroojalian, F., Zarghami, N., & Pilehvar, Y. (2021). Prolonged proliferation and delayed senescence of the adipose-derived stem cells grown on the electrospun composite nanofiber co-encapsulated with TiO2 nanoparticles and metformin-loaded mesoporous silica nanoparticles. International Journal of Pharmaceutics., 604, 120733.

    Article  PubMed  CAS  Google Scholar 

  16. Kříž, N., Yamamotova, A., Tobiáš, J., & Rokyta, R. (2006). Tail-flick latency and self-mutilation following unilateral deafferentation in rats. Physiological Research, 55, 213–220.

    Article  PubMed  Google Scholar 

  17. Afolabi, A. O., Mudashiru, S. K., & Alagbonsi, I. A. (2013). Effects of salt-loading hypertension on nociception in rats. Journal of Pain Research., 6, 387.

    PubMed  PubMed Central  Google Scholar 

  18. Sun, J., Chen, F., Braun, C., Zhou, Y.-Q., Rittner, H., Tian, Y.-K., et al. (2018). Role of curcumin in the management of pathological pain. Phytomedicine, 48, 129–140.

    Article  PubMed  CAS  Google Scholar 

  19. Mashayekhi, S., Rasoulpoor, S., Shabani, S., Esmaeilizadeh, N., Serati-Nouri, H., Sheervalilou, R., et al. (2020). Curcumin-loaded mesoporous silica nanoparticles/nanofiber composites for supporting long-term proliferation and stemness preservation of adipose-derived stem cells. International journal of pharmaceutics., 587, 119656.

    Article  PubMed  CAS  Google Scholar 

  20. Serati-Nouri, H., Mahmoudnezhad, A., Bayrami, M., Sanajou, D., Tozihi, M., Roshangar, L., et al. (2021). Sustained delivery efficiency of curcumin through ZSM-5 nanozeolites/electrospun nanofibers for counteracting senescence of human adipose-derived stem cells. Journal of Drug Delivery Science and Technology., 66, 102902.

    Article  CAS  Google Scholar 

  21. Tavakoli, F., Jahanban-Esfahlan, R., Seidi, K., Jabbari, M., Behzadi, R., Pilehvar-Soltanahmadi, Y., et al. (2018). Effects of nano-encapsulated curcumin-chrysin on telomerase, MMPs and TIMPs gene expression in mouse B16F10 melanoma tumour model. Artificial Cells, Nanomedicine, and Biotechnology., 46(sup2), 75–86.

    Article  PubMed  CAS  Google Scholar 

  22. Montazeri, M., Pilehvar-Soltanahmadi, Y., Mohaghegh, M., Panahi, A., Khodi, S., Zarghami, N., et al. (2017). Antiproliferative and apoptotic effect of dendrosomal curcumin nanoformulation in P53 mutant and wide-type cancer cell lines. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents), 17(5), 662–73.

  23. Khodadadi, M., Alijani, S., Montazeri, M., Esmaeilizadeh, N., Sadeghi-Soureh, S., & Pilehvar-Soltanahmadi, Y. (2020). Recent advances in electrospun nanofiber-mediated drug delivery strategies for localized cancer chemotherapy. Journal of Biomedical Materials Research Part A., 108(7), 1444–1458.

    Article  PubMed  CAS  Google Scholar 

  24. Talaei, S., Mellatyar, H., Pilehvar-Soltanahmadi, Y., Asadi, A., Akbarzadeh, A., & Zarghami, N. (2019). 17-Allylamino-17-demethoxygeldanamycin loaded PCL/PEG nanofibrous scaffold for effective growth inhibition of T47D breast cancer cells. Journal of Drug Delivery Science and Technology., 49, 162–168.

    Article  CAS  Google Scholar 

  25. Mellatyar, H., Talaei, S., Pilehvar-Soltanahmadi, Y., Dadashpour, M., Barzegar, A., Akbarzadeh, A., et al. (2018). 17-DMAG-loaded nanofibrous scaffold for effective growth inhibition of lung cancer cells through targeting HSP90 gene expression. Biomedicine & Pharmacotherapy., 105, 1026–1032.

    Article  CAS  Google Scholar 

  26. Mondal, D., Griffith, M., & Venkatraman, S. S. (2016). Polycaprolactone-based biomaterials for tissue engineering and drug delivery: Current scenario and challenges. International Journal of Polymeric Materials and Polymeric Biomaterials., 65(5), 255–265.

    Article  CAS  Google Scholar 

  27. Sadeghi-Soureh, S., Jafari, R., Gholikhani-Darbroud, R., & Pilehvar-Soltanahmadi, Y. (2020). Potential of Chrysin-loaded PCL/gelatin nanofibers for modulation of macrophage functional polarity towards anti-inflammatory/pro-regenerative phenotype. Journal of Drug Delivery Science and Technology., 58, 101802.

    Article  CAS  Google Scholar 

  28. Ahmadi, S., Pilehvar, Y., Zarghami, N., & Abri, A. (2021). Efficient osteoblastic differentiation of human adipose-derived stem cells on TiO2 nanoparticles and metformin co-embedded electrospun composite nanofibers. Journal of Drug Delivery Science and Technology., 66, 102798.

    Article  CAS  Google Scholar 

  29. Erdal, N.B., Lando, G.A., Yadav, A., Srivastava, R.K. Hakkarainen, M. (2020) Hydrolytic degradation of porous crosslinked poly (ε-caprolactone) synthesized by high internal phase emulsion templating. Polymers, 12(8), 1849.

  30. Nejati-Koshki, K., Pilehvar-Soltanahmadi, Y., Alizadeh, E., Ebrahimi-Kalan, A., Mortazavi, Y., & Zarghami, N. (2017). Development of Emu oil-loaded PCL/collagen bioactive nanofibers for proliferation and stemness preservation of human adipose-derived stem cells: Possible application in regenerative medicine. Drug development and industrial pharmacy., 43(12), 1978–1988.

    Article  PubMed  CAS  Google Scholar 

  31. Mohandesnezhad, S., Pilehvar-Soltanahmadi, Y., Alizadeh, E., Goodarzi, A., Davaran, S., Khatamian, M., et al. (2020). In vitro evaluation of Zeolite-nHA blended PCL/PLA nanofibers for dental tissue engineering. Materials Chemistry and Physics., 252, 123152.

    Article  CAS  Google Scholar 

  32. Yu, D., Thakor, D. K., Han, I., Ropper, A. E., Haragopal, H., Sidman, R. L., et al. (2013). Alleviation of chronic pain following rat spinal cord compression injury with multimodal actions of huperzine A. Proceedings of the National Academy of Sciences., 110(8), E746–E755.

    Article  CAS  Google Scholar 

  33. Lograsso, M., Nadeson, R., & Goodchild, C. S. (2002). The spinal antinociceptive effects of cholinergic drugs in rats: Receptor subtype specificity in different nociceptive tests. BMC Pharmacology., 2(1), 1–9.

    Article  Google Scholar 

  34. Mirzaei, H., Shakeri, A., Rashidi, B., Jalili, A., Banikazemi, Z., & Sahebkar, A. (2017). Phytosomal curcumin: A review of pharmacokinetic, experimental and clinical studies. Biomedicine & Pharmacotherapy., 85, 102–112.

    Article  CAS  Google Scholar 

  35. Alibakhshi, A., Ranjbari, J., Pilehvar-Soltanahmadi, Y., Nasiri, M., Mollazade, M., & Zarghami, N. (2016). An update on phytochemicals in molecular target therapy of cancer: Potential inhibitory effect on telomerase activity. Current medicinal chemistry., 23(22), 2380–2393.

    Article  PubMed  CAS  Google Scholar 

  36. Wahlström, B. and Blennow, G. (1978) A study on the fate of curcumin in the rat. Acta pharmacologica et toxicologica, 43, 86–92.

Download references

Acknowledgements

The authors would like to thank the “Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran” for their kind cooperation.

Author information

Authors and Affiliations

Authors

Contributions

TJ and YH: methodology, investigation, original draft preparation. NE: conceptualization, investigation, resources. AB: investigation, methodology, validation. ATJ: formal analysis, writing–review and editing. MMS: methodology, writing–review and editing. ST: project administration. YP: supervision, writing–review and editing, funding acquisition.

Corresponding author

Correspondence to Younes Pilehvar.

Ethics declarations

Ethical Approval

All procedures performed in studies involving human participants were under the ethical standards of the Ethics Committee of Tabriz University of Medical Sciences and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Tingting Jiang and Yu Han are co-first authors (these authors contributed equally to this work).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, T., Han, Y., Esmaeilizadeh, N. et al. Epidural Administration of Curcumin-Loaded Polycaprolactone/Gelatin Electrospun Nanofibers for Extended Analgesia After Laminectomy in Rats. Appl Biochem Biotechnol 195, 6557–6571 (2023). https://doi.org/10.1007/s12010-023-04342-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04342-y

Keywords

Navigation