Skip to main content

Advertisement

Log in

Screening of Anti-carcinogenic Properties of Phytocompounds from Allium ascalonicum for Treating Breast Cancer Through In Silico and In Vitro Approaches

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Plants, rich in phytocompounds, have been in usage since time immemorial for treating various diseases, namely, cancer. One such plant species, Allium ascalonicum (Shallot) belonging to Amaryllidaceae family is being studied here for its anti-carcinogenic properties against breast cancer. GC–MS characterization of A. ascalonicum exhibited 48 phytocompounds containing five peak phytocompounds and 13 phytocompounds with anti-carcinogenic properties. These 13 anti-carcinogenic phytocompounds were docked with three hormonal receptors involved in breast cancer malignancy, namely, ERα, PR, and human EGFR with tamoxifen as standard for in silico analysis. The results exhibited three phytocompounds that had better binding scores compared to that of the standard drug, tamoxifen. Lyophilized powder of aqueous A. ascalonicum extract, also referred as ASE, was used for in vitro approaches. Antioxidant study using DPPH assay revealed that the highest percentage of FRSA in ASE, nearly 51%, was observed at 50 µg/ml concentration. Cytotoxicity study on MCF-7 cell line using MTT assay demonstrated IC50 value at 1400 µg/ml and anti-proliferative study using Trypan blue assay for the determination of percentage viability of MCF-7 cells at IC50 concentration was observed to be 49%. Anti-mitotic activity using Vigna radiata seed germination assay revealed clear morphological differences in a dose-dependent manner between the seeds grown at various concentrations of ASE with nearly 56.5% growth inhibition observed at 1500 µg/ml concentration. Hence, this research work proves that Allium ascalonicum has very good anti-carcinogenic properties and this can be confirmed further through in vivo animal model studies and it can also be formulated as a promising drug to treat breast cancer.

Graphical Abstract

GC–MS characterization of Allium ascalonicum demonstrated the presence of five peak compounds and thirteen anti-carcinogenic compounds. The thirteen anti-carcinogenic compounds were docked with three target proteins (in silico analysis) involved in breast cancer malignancy and identified the presence of three potential phytocompounds that can be used for treating breast cancer. In vitro approaches also confirmed the presence of anti-carcinogenic properties such as antioxidative potential, cytotoxic, anti-proliferative, and anti-mitotic effects. Hence, Allium ascalonicum can be taken further to in vivo studies so that it can be formulated to treat breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

Data will be available on request

Code Availability

Not applicable

Abbreviations

GC-MS:

Gas chromatography-mass spectrometry

A. ascalonicum :

Allium ascalonicum

ERα:

Alpha binding domain-human estrogen receptor

PR:

Human progesterone receptor

EGFR:

Epidermal growth factor receptor

ASE:

Aqueous shallot extract

DPPH:

2,2-Diphenyl-1-picrylhydrazyl

FRSA:

Free radical scavenging activity

MTT:

3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide

V. rad iata :

Vigna radiata

References

  1. Iqbal, J., Abbasi, B. A., Batool, R., Mahmood, T., Ali, B., Khalil, A. T., Kanwal, S., Shah, S. A., & Ahmed, R. (2018). Potential phytocompounds for developing breast cancer therapeutics: Nature’s healing touch. European Journal of Pharmacology, 827, 125–148. https://doi.org/10.1016/j.ejphar.2018.03.007

    Article  CAS  Google Scholar 

  2. Seigel, R. L., Miller, K. D., & Fuchs, H. E. J. A. (2022). Cancer statistics, 2022. CA: A Cancer Journal for Clinicians. https://doi.org/10.3322/caac.21708

    Article  Google Scholar 

  3. Lei, S., Zheng, R., Zhang, S., Wang, S., Chen, R., Sun, K., Zeng, H., Zhou, J., & Wei, W. (2021). Global patterns of breast cancer incidence and mortality: A population-based cancer registry data analysis from 2000 to 2020. Cancer Communications, 41(11), 1183–1194. https://doi.org/10.1002/cac2.12207

    Article  Google Scholar 

  4. Abinaya, M., Priya, S., Karunya, J. R., Ranjani, S., & Hemalatha, S. (2021). Screening the efficacy of compounds from ghee to control cancer: An in silico approach. Biointerface Research in Applied Chemistry, 11(6), 14115–14126. https://doi.org/10.33263/BRIAC116.1411514126

    Article  Google Scholar 

  5. Asma, B., & Hemalatha, S. (2022). SARS-CoV-2 inhibitors from Nigella sativa. Applied Biochemistry and Biotechnology, 194, 1051–1090. https://doi.org/10.1007/s12010-021-03790-8

    Article  CAS  Google Scholar 

  6. Asemani, Y., Zamani, N., Bayat, M., & Amirghofran, Z. (2019). Allium vegetables for possible future of cancer treatment. Phytotherapy Research, 33(12), 3019–3039. https://doi.org/10.1002/ptr.6490

    Article  Google Scholar 

  7. Nicastro, H. L., Ross, S. A., & Milner, J. A. (2015). Garlic and onions: Their cancer prevention properties. Cancer Prevention Research, 8(3), 181–189. https://doi.org/10.1158/1940-6207.CAPR-14-0172

    Article  CAS  Google Scholar 

  8. Yang, E. J., Kim, G. S., Kim, J. A., & Song, K. (2013). Protective effects of onion-derived quercetin on glutamate-mediated hippocampal neuronal cell death. PharmacognosyMagazine, 9(36), 302–308. https://doi.org/10.4103/0973-1296.117824

    Article  CAS  Google Scholar 

  9. Kendler, B. (1987). Garlic (Allium sativum) and onion (Allium cepa): A review of their relationship to cardiovascular disease. Preventive Medicine, 16(5), 670–685. https://doi.org/10.1016/0091-7435(87)90050-8

    Article  CAS  Google Scholar 

  10. Wang, Z. Y., & Yin, L. (2015). Estrogen receptor alpha-36 (ER-α36): A new player in human breast cancer. Molecular and Cellular Endocrinology, 418, 193–206. https://doi.org/10.1016/j.mce.2015.04.017

    Article  CAS  Google Scholar 

  11. Kiani, J., Khan, A., Khawar, H., et al. (2006). Estrogen receptor α-negative and progesterone receptor-positive breast cancer: Lab error or real entity? Pathology and Oncology Research, 12, 223. https://doi.org/10.1007/BF02893416

    Article  Google Scholar 

  12. Mueller, K. L., Yang, Z. Q., Haddad, R., Ethier, S. P., & Boerner, J. L. (2010). EGFR/Met association regulates EGFR TKI resistance in breast cancer. Journal of Molecular Signaling, 5, 1–8. https://doi.org/10.1186/1750-2187-5-8

    Article  CAS  Google Scholar 

  13. Mir, M. A., Bashir, N., Alfaify, A., & Oteef, M. (2020). GC-MS analysis of Myrtus communis extract and its antibacterial activity against Gram-positive bacteria. BMC Complementary Medicine and Therapies, 20(1), 86. https://doi.org/10.1186/s12906-020-2863-3

    Article  Google Scholar 

  14. Acharya, R., Chacko, S., Bose, P., Lapenna, A., & Pattanayak, S. (2019). Structure based multitargeted molecular docking analysis of selected furanocoumarins against breast cancer. Scientific Reports, 9(1), 15743. https://doi.org/10.1038/s41598-019-52162-0

    Article  CAS  Google Scholar 

  15. Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334

    Article  CAS  Google Scholar 

  16. Ravindranath, K. J., Mohaideen, N. S. M. H., Srinivasan, H. (2022). Phytocompounds of onion target heat shock proteins (HSP70s) to control breast cancer malignancy. Applied Biochemistry and Biotechnology. Published online 6th June, 2022. https://doi.org/10.1007/s12010-022-04016-1

  17. Blois, M. (1958). Antioxidant Determinations by the Use of a Stable Free Radical. Nature, 181, 1199–1200. https://doi.org/10.1038/1811199a0

    Article  CAS  Google Scholar 

  18. Panneerselvam, C., Murugan, K., Roni, M., et al. (2016). Fern-synthesized nanoparticles in the fight against malaria: LC/MS analysis of Pteridium aquilinum leaf extract and biosynthesis of silver nanoparticles with high mosquitocidal and antiplasmodial activity. Parasitology Research, 115, 997–1013. https://doi.org/10.1007/s00436-015-4828-x

    Article  Google Scholar 

  19. Yen, G. C., & Duh, P. (1994). Scavenging effect of methanolic extracts of peanut hulls on free-radical and active oxygen species. Journal of Agricultural and Food Chemistry, 42(3), 629–632. https://doi.org/10.1021/jf00039a005

    Article  CAS  Google Scholar 

  20. Al-Daghistani, H. I., Abu-Niaaj, L. F., Bustanji, Y., Al-Hamaideh, K. D., Al-Salamat, H., Nassar, M. N., Jaber, H. M., Amer, N. H., Abu-Irmaileh, B., & Al-Nuaimi, A. (2021). Antibacterial and cytotoxicity evaluation of Arum hygrophilum Bioss. European Review for Medical and Pharmacological Sciences, 25(23), 7306–7316. https://doi.org/10.26355/eurrev_202112_27424

    Article  CAS  Google Scholar 

  21. Fredotović, Ž, Šprung, M., Soldo, B., et al. (2017). Chemical Composition and Biological Activity of Allium cepa L. and Allium × cornutum (Clementi ex Visiani 1842) Methanolic Extracts. Molecules, 22(3), 448. https://doi.org/10.3390/molecules22030448

    Article  CAS  Google Scholar 

  22. Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65(1–2), 55–63. https://doi.org/10.1016/0022-1759(83)90303-4

    Article  CAS  Google Scholar 

  23. Nigjeh, S. E., Yeap, S. K., Nordin, N., Kamalideghan, B., Ky, H., & Rosli, R. (2018). Citral induced apoptosis in MDA-MB-231 spheroid cells. BMC Complementary and Alternative Medicine, 18, 56. https://doi.org/10.1186/s12906-018-2115-y

    Article  CAS  Google Scholar 

  24. Elsyana, V., Bintang, M., Priosoeryanto, B. (2016). Cytotoxicity and antiproliferative activity assay of clove mistletoe (Dendrophthoe pentandra (L.) Miq.) leaves extracts. Advances in Pharmacological and Pharmaceutical Sciences, 3242698. https://doi.org/10.1155/2016/3242698

  25. Satyanarayana Murthy, G., Francis, T. P., Rajendra Singh, C., Nagendra, H. G., & Naik, C. (2011). An assay for screening anti-mitotic activity of herbal extracts. Current Science, 100, 1399–1404. https://www.currentscience.ac.in/Volumes/100/09/1399.pdf.

    Google Scholar 

  26. Osborne, C. (1998). Tamoxifen in the treatment of breast cancer. The New England Journal of Medicine, 339(22), 1609–1618. https://doi.org/10.1056/NEJM199811263392207

    Article  CAS  Google Scholar 

  27. Qu, J., Zhao, X., Ma, P. X., & Guo, B. (2017). pH-responsive self-healing injectable hydrogel based on N-carboxyethyl chitosan for hepatocellular carcinoma therapy. Acta Biomaterialia, 58, 168–180. https://doi.org/10.1016/j.actbio.2017.06.001

    Article  CAS  Google Scholar 

  28. Cecchi, L., Ieri, F., Vignolini, P., Mulinacci, N., & Romani, A. (2020). Characterization of volatile and flavonoid composition of different cuts of dried onion (Allium cepa L.) by HS-SPME-GC-MS, HS-SPME-GCxGC-TOF and HPLC-DAD. Molecules, 25(2), 408. https://doi.org/10.3390/molecules25020408

    Article  CAS  Google Scholar 

  29. Costa, E. V., Soares, L. D. N., Chaar, J. D. S., Silva, V. R., Santos, L. S., Koolen, H. H. F., Silva, F. M. A. D., Tavares, J. F., Zengin, G., Soares, M. B. P., & Bezerra, D. (2021). Benzylated dihydroflavones and isoquinoline-derived alkaloids from the Bark of Diclinanona calycina (Annonaceae) and their cytotoxicities. Molecules, 26(12), 3714. https://doi.org/10.3390/molecules26123714

    Article  CAS  Google Scholar 

  30. Liguori, L., Califano, R., Albanese, D., Raimo, F., Crescitelli, A., Di Matteo, M. (2017). Chemical composition and antioxidant properties of five white onion (Allium cepa L.) landraces. Journal of Food Quality, 6873651. https://doi.org/10.1155/2017/6873651

  31. Dalla Pozza, E., Dando, I., Pacchiana, R., Liboi, E., Scupoli, M. T., Donadelli, M., & Palmieri, M. (2020). Regulation of succinate dehydrogenase and role of succinate in cancer. Seminars in Cell and Developmental Biology, 98, 4–14. https://doi.org/10.1016/j.semcdb.2019.04.013

    Article  CAS  Google Scholar 

  32. Vicker, N., Bailey, H. V., Day, J. M., Mahon, M. F., Smith, A., Tutill, H. J., Purohit, A., & Potter, B. (2021). Substituted aryl benzylamines as potent and selective inhibitors of 17β-hydroxysteroid dehydrogenase type 3. Molecules, 26(23), 7166. https://doi.org/10.3390/molecules26237166

    Article  CAS  Google Scholar 

  33. Sumi, H., Yabuki, M., Iwai, K., Morimoto, M., Hibino, R., Inazuka, M., Hashimoto, K., Kosugi, Y., Aoyama, K., Yamamoto, S., Yoshimatsu, M., Yamasaki, H., Tozawa, R., Ishikawa, T., & Yoshida, S. (2013). Antitumor activity and pharmacodynamic biomarkers of a novel and orally available small-molecule antagonist of inhibitor of apoptosis proteins. Molecular Cancer Therapeutics, 12(2), 230–240. https://doi.org/10.1158/1535-7163.MCT-12-0699

    Article  CAS  Google Scholar 

  34. Asano, M., Hashimoto, K., Saito, B., Shiokawa, Z., Sumi, H., Yabuki, M., Yoshimatsu, M., Aoyama, K., Hamada, T., Morishita, N., Dougan, D. R., Mol, C. D., Yoshida, S., & Ishikawa, T. (2013). Design, stereoselective synthesis, and biological evaluation of novel tri-cyclic compounds as inhibitor of apoptosis proteins (IAP) antagonists. Bioorganic and Medicinal Chemistry, 21(18), 5725–5737. https://doi.org/10.1016/j.bmc.2013.07.020

    Article  CAS  Google Scholar 

  35. Jouffroy, M., Pye, P., Jerhaoui, S., Chen, W., & Surkyn, M. (2022). Development of a concise and robust route to a key fragment of MCL-1 inhibitors via stereoselective defluoroborylation. The Journal of Organic Chemistry, 87(4), 2136–2141. https://doi.org/10.1021/acs.joc.1c01666

    Article  CAS  Google Scholar 

  36. Krishnamurth, Y. S., Yoda, H., Hiraoka, K., Inoue, T., Lin, J., Shinozaki, Y., Watanabe, T., Koshikawa, N., Takatori, A., & Nagase, H. (2021). Targeting the mutant PIK3CA gene by DNA-alkylating pyrrole-imidazole polyamide in cervical cancer. Cancer Science, 112(3), 1141–1149. https://doi.org/10.1111/cas.14785

    Article  CAS  Google Scholar 

  37. Maeda, R., Bando, T., & Sugiyama, H. (2021). Application of DNA-alkylating pyrrole-imidazole polyamides for cancer treatment. ChemBioChem, 22(9), 1538–1545. https://doi.org/10.1002/cbic.202000752

    Article  CAS  Google Scholar 

  38. Han, M., Shen, J., Wang, L., Wang, Y., Zhai, X., Li, Y., Liu, M., Li, Z., Zuo, D., & Wu, Y. (2018). 5-chloro-N4-(2-(isopropylsulfonyl)phenyl)-N2-(2-methoxy-4-(4-((4-methylpiperazin-1-yl)methyl)-1H-1,2,3-triazol-1-yl)phenyl)pyrimidine-2,4-diamine (WY-135), a novel ALK inhibitor, induces cell cycle arrest and apoptosis through inhibiting ALK and its downs. Chemico-Biological Interactions, 284, 24–31. https://doi.org/10.1016/j.cbi.2018.02.018

    Article  CAS  Google Scholar 

  39. Wang, L., Xu, X., Liu, T., Wang, J., Shen, J., Guo, M., Wu, Y., Zhai, X., & Zuo, D. (2020). 1-(4-((5-chloro-4-((2-(isopropylsulfonyl)phenyl)amino)pyrimidin-2-yl)amino)-3-methoxyphenyl)-3-(2-(dimethylamino)ethyl)imidazolidin-2-one (ZX-42), a novel ALK inhibitor, induces apoptosis and protective autophagy in H2228 cells. Journal of Pharmacy and Pharmacology, 72(10), 1370–1382. https://doi.org/10.1111/jphp.13315

    Article  CAS  Google Scholar 

  40. Villière, A., Le Roy, S., Fillonneau, C., et al. (2015). Evaluation of aroma profile differences between sué, sautéed, and pan-fried onions using an innovative olfactometric approach. Flavour, 4, 24. https://doi.org/10.1186/s13411-015-0034-0

    Article  Google Scholar 

  41. Kurutas, E. (2016). The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: Current state. Nutrition Journal, 15, 71. https://doi.org/10.1186/s12937-016-0186-5

    Article  CAS  Google Scholar 

  42. Etaiw, S. E., Abd El-Aziz, D. M., Abd El-Zaher, E. H., & Ali, E. (2011). Synthesis, spectral, antimicrobial and antitumor assessment of Schiff base derived from 2-aminobenzothiazole and its transition metal complexes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 79(5), 1331–1337. https://doi.org/10.1016/j.saa.2011.04.064

    Article  CAS  Google Scholar 

  43. Chia, PW., Lim, BS., Tan, KC., Yong, FS., Su-Yin, K. (2018). Water extract of onion peel for the synthesis of bisindolylmethanes. Journal of King Saud University - Science, 31(4).https://doi.org/10.1016/j.jksus.2018.05.029

  44. Boot, A., Brito, A., Van Wezel, T., Morreau, H., Costa, M., & Proença, F. (2014). Anticancer activity of novel pyrido[2,3-b]indolizine derivatives: The relevance of phenolic substituents. Anticancer Research, 34(4), 1673–1677. https://ar.iiarjournals.org/content/34/4/1673.long.

    CAS  Google Scholar 

  45. Wermes, C., Cannon, R., Haasnoot, S., Colstee, H., Niedeveld, C., Koopmanschap, G., & Da Costa, N. (2017). Identification of thiols in yellow onion (Allium cepa L.) using solvent vented large volume injection GC-MS. Journal of Food Science, 82(11), 2606–2613. https://doi.org/10.1111/1750-3841.13943

    Article  CAS  Google Scholar 

  46. LaVoie, E. J., Dolan, S., Little, P., Wang, C. X., Sugie, S., & Rivenson, A. (1988). Carcinogenicity of quinoline, 4- and 8-methylquinoline and benzoquinolines in newborn mice and rats. Food and Chemical Toxicology, 26(7), 625–629. https://doi.org/10.1016/0278-6915(88)90233-5

    Article  CAS  Google Scholar 

  47. Fei, X., Gu, Y., Ban, Y., Liu, Z., & Zhang, B. (2009). Thiazole Orange derivatives: Synthesis, fluorescence properties, and labeling cancer cells. Bioorganic and Medicinal Chemistry, 17(2), 585–591. https://doi.org/10.1016/j.bmc.2008.11.083

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are very much grateful to the School of Life Sciences, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, for providing research facilities and also for their constant support and encouragement.

Funding

This project work was sanctioned by Tamil Nadu State Council for Science and Technology (TNSCST) under the Student Project Scheme (SPS)-Science Stream (2021–2022) Code: MS-017, DOTE Campus, Chennai-600 025, Tamil Nadu, India.

Author information

Authors and Affiliations

Authors

Contributions

Hemalatha Srinivasan: conceived the idea, supervision, data curation, validation, and project administration. Karunya Jenin Ravindranath: designed-performed research and wrote manuscript. Simon Durairaj Christian: performed research, analyzed data, reviewing, and editing.

Corresponding author

Correspondence to Hemalatha Srinivasan.

Ethics declarations

Ethical Approval

Not applicable

Consent to Participate

Not applicable

Consent for Publication

All authors contributed equally and approved the manuscript for publication.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ravindranath, K.J., Christian, S.D. & Srinivasan, H. Screening of Anti-carcinogenic Properties of Phytocompounds from Allium ascalonicum for Treating Breast Cancer Through In Silico and In Vitro Approaches. Appl Biochem Biotechnol 195, 1136–1157 (2023). https://doi.org/10.1007/s12010-022-04202-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-04202-1

Keywords

Navigation