Skip to main content
Log in

Effects of Cellulase and Lactobacillus plantarum on Fermentation Quality, Chemical Composition, and Microbial Community of Mixed Silage of Whole-Plant Corn and Peanut Vines

Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Significant anaerobic fermentation occurs in silage through the action of anaerobic bacteria. The objective of this study was to evaluate the effects of cellulase and Lactobacillus plantarum on the fermentation quality and bacterial community of whole-plant corn and peanut vine mixed silage. Mixed silage was tested with no addition (CK), addition of Lactobacillus plantarum (LP), addition of cellulase (CE), and the simultaneous addition of Lactobacillus plantarum and cellulase (LPCE). LPCE samples exhibited decreased pH; decreased content of acetic acid, propionic acid, and butyric acid; and increased content of lactic acid. LP and LPCE had better effects on chemical composition than CK and CE, especially in decreasing acid detergent fiber and neutral detergent fiber content. High-throughput sequencing identified Lactobacillus, Klebsiella, Serratia, and Weissella as the main microorganisms. LP and CE increased the abundance of Acetobacter, and LPCE decreased the abundance of Acetobacter. All additives decreased the abundance of Weissella, Leuconostoc, and Lactococcus, and increased the abundance of Pantoea. Overall, simultaneous addition of cellulase and Lactobacillus plantarum helped to improve the quality of mixed silage of whole-plant corn and peanut vines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Weinberg, Z. G., Muck, R. E., Weimer, P. J., Chen, Y., & Gamburg, M. (2004). Lactic acid bacteria used in inoculants for silage as probiotics for ruminants. Appl. Biochem. Biotechnol, 118, 1–9.

    Article  CAS  Google Scholar 

  2. Khan, N. A., Yu, P., Ali, M., Cone, J. W., & Hendriks, W. H. (2015). Nutritive value of maize silage in relation to dairy cow performance and milk quality. J. Sci. Food Agric, 95, 238–252.

    Article  CAS  Google Scholar 

  3. Zhao, X. Y., Chen, J., & Du, F. L. (2012). Potential use of peanut by-products in food processing: A review. J Food Sci Tech Mys, 49, 521–529.

    Article  CAS  Google Scholar 

  4. Li, R., Jiang, D., Zheng, M., Tian, P., Zheng, M., & Xu, C. (2020). Microbial community dynamics during alfalfa silage with or without clostridial fermentation. Science and Reports, 10, 17782.

    Article  CAS  Google Scholar 

  5. Avila, C. L. S., & Carvalho, B. F. (2020). Silage fermentation-updates focusing on the performance of micro-organisms. J. Appl. Microbiol, 128, 966–984.

    Article  CAS  Google Scholar 

  6. Cai, Y., Du, Z., Yamasaki, S., Nguluve, D., Tinga, B., Macome, F., & Oya, T. (2020). Community of natural lactic acid bacteria and silage fermentation of corn stover and sugarcane tops in Africa. Asian-Australas J Anim Sci, 33, 1252–1264.

    Article  CAS  Google Scholar 

  7. Zhao, S. S., Wang, Y. P., Yang, F. Y., Wang, Y., & Zhang, H. (2020). Screening a Lactobacillus plantarum strain for good adaption in alfalfa ensiling and demonstrating its improvement of alfalfa silage quality. J. Appl. Microbiol, 129, 233–242.

    Article  CAS  Google Scholar 

  8. Jiang, D., Li, B., Zheng, M., Niu, D., Zuo, S., & Xu, C. (2020). Effects of Pediococcus pentosaceus on fermentation, aerobic stability and microbial communities during ensiling and aerobic spoilage of total mixed ration silage containing alfalfa (Medicago sativa L.). Grassland Science, 66, 215–224.

    Article  CAS  Google Scholar 

  9. Van Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci, 74, 3583–3597.

    Article  Google Scholar 

  10. Leyva, A., Quintana, A., Sanchez, M., Rodriguez, E. N., Cremata, J., & Sanchez, J. C. (2008). Rapid and sensitive anthrone-sulfuric acid assay in microplate format to quantify carbohydrate in biopharmaceutical products: Method development and validation. Biologicals, 36, 134–141.

    Article  CAS  Google Scholar 

  11. Broderick, G. A., & Kang, J. H. (1980). Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. J. Dairy Sci, 63, 64–75.

    Article  CAS  Google Scholar 

  12. Muck, R. E., & Dickerson, J. T. (1988). Storage temperature effects on proteolysis in alfalfa silage. Transactions of the ASAE, 31, 1005–1009.

    Article  CAS  Google Scholar 

  13. Mengjiao, G., Fahao, W., Guangen, H., Qin, Q., Rong, L., Ning, L., Liangmeng, W., & Tongjie, C. (2017). Bacillus subtilis improves immunity and disease resistance in rabbits. Front immunol, 8, 354.

    Google Scholar 

  14. Magoc, T., & Salzberg, S. L. (2011). FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics, 27, 2957–2963.

    Article  CAS  Google Scholar 

  15. Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., Fierer, N., Pena, A. G., Goodrich, J. K., Gordon, J. I., Huttley, G. A., Kelley, S. T., Knights, D., Koenig, J. E., Ley, R. E., Lozupone, C. A., McDonald, D., Muegge, B. D., Pirrung, M., … Knight, R. (2010). QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7, 335–336.

    Article  CAS  Google Scholar 

  16. Bokulich, N. A., Subramanian, S., Faith, J. J., Gevers, D., Gordon, J. I., Knight, R., Mills, D. A., & Caporaso, J. G. (2013). Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nature Methods, 10, 57–59.

    Article  CAS  Google Scholar 

  17. Mu, L., Xie, Z., Hu, L., Chen, G., & Zhang, Z. (2020). Cellulase interacts with Lactobacillus plantarum to affect chemical composition, bacterial communities, and aerobic stability in mixed silage of high-moisture amaranth and rice straw. Bioresour Technol, 315, 123772.

    Article  CAS  Google Scholar 

  18. Wang, Y., Zhou, W., Wang, C., Yang, F., Chen, X., & Zhang, Q. (2020). Effect on the ensilage performance and microbial community of adding Neolamarckia cadamba leaves to corn stalks. Microb. Biotechnol, 13, 1502–1514.

    Article  CAS  Google Scholar 

  19. Xu, Z., Zhang, S., Zhang, R., Li, S., & Kong, J. (2018). The changes in dominant lactic acid bacteria and their metabolites during corn stover ensiling. J. Appl. Microbiol, 125, 675–685.

    Article  CAS  Google Scholar 

  20. Liu, B., Huan, H., Gu, H., Xu, N., Shen, Q., & Ding, C. (2019). Dynamics of a microbial community during ensiling and upon aerobic exposure in lactic acid bacteria inoculation-treated and untreated barley silages. Bioresource Technology, 273, 212–219.

    Article  CAS  Google Scholar 

  21. Nazar, M., Wang, S., Zhao, J., Dong, Z., Li, J., Kaka, N. A., & Shao, T. (2020). The feasibility and effects of exogenous epiphytic microbiota on the fermentation quality and microbial community dynamics of whole crop corn. Bioresour Technol, 306, 123106.

    Article  CAS  Google Scholar 

  22. Qin, M. Z., & Shen, Y. X. (2013). Effect of application of a bacteria inoculant and wheat bran on fermentation quality of peanut vine ensiled alone or with corn stover. J. Integr. Agric, 12, 556–560.

    Article  Google Scholar 

  23. Han, K. J., Collins, M., Vanzant, E. S., & Dougherty, C. T. (2006). Characteristics of baled silage made from first and second harvests of wilted and severely wilted forages. Grass Forage Sci, 61, 22–31.

    Article  Google Scholar 

  24. Ni, K., Wang, F., Zhu, B., Yang, J., Zhou, G., Pan, Y., Tao, Y., & Zhong, J. (2017). Effects of lactic acid bacteria and molasses additives on the microbial community and fermentation quality of soybean silage. Bioresour Technol, 238, 706–715.

    Article  CAS  Google Scholar 

  25. Seale, D. R., Henderson, A. R., Pettersson, K. O., & Lowe, J. F. (1986). The effect of addition of sugar and inoculation with two commercial inoculants on the fermentation of lucerne silage in laboratory silos. Grass Forage Sci, 41(61), 70.

    Google Scholar 

  26. Zhang, J. G., Cai, Y., Kobayashi, R., & Kumai, S. (2000). Characteristics of lactic acid bacteria isolated from forage crops and their effects on silage fermentation. J. Sci. Food Agric, 80, 1455–1460.

    Article  CAS  Google Scholar 

  27. Su, R., Ni, K., Wang, T., Yang, X., Zhang, J., Liu, Y., Shi, W., Yan, L., Jie, C., & Zhong, J. (2019). Effects of ferulic acid esterase-producing Lactobacillus fermentum and cellulase additives on the fermentation quality and microbial community of alfalfa silage. PeerJ, 7, e7712.

    Article  Google Scholar 

  28. Wang, J., Chen, L., Yuan, X. J., Guo, G., Li, J. F., Bai, Y. F., & Shao, T. (2017). Effects of molasses on the fermentation characteristics of mixed silage prepared with rice straw, local vegetable by-products and alfalfa in Southeast China. J Integr Agric, 16, 664–670.

    Article  CAS  Google Scholar 

  29. Li, X., Tian, J., Zhang, Q., Jiang, Y., Wu, Z., & Yu, Z. (2018). Effects of mixing red clover with alfalfa at different ratios on dynamics of proteolysis and protease activities during ensiling. J. Dairy Sci, 101, 8954–8964.

    Article  CAS  Google Scholar 

  30. Xu, D., Ding, Z., Wang, M., Bai, J., Ke, W., Zhang, Y., & Guo, X. (2020). Characterization of the microbial community, metabolome and biotransformation of phenolic compounds of sainfoin (Onobrychis viciifolia) silage ensiled with or without inoculation of Lactobacillus plantarum. Bioresour Technol, 316, 123910.

    Article  CAS  Google Scholar 

  31. Sun, Q., Gao, F., Yu, Z., Tao, Y., Zhao, S., & Cai, Y. (2012). Fermentation quality and chemical composition of shrub silage treated with lactic acid bacteria inoculants and cellulase additives. Anim. Sci J, 83, 305–309.

    Article  CAS  Google Scholar 

  32. Ni, K., Zhao, J., Zhu, B., Su, R., Pan, Y., Ma, J., Zhou, G., Tao, Y., Liu, X., & Zhong, J. (2018). Assessing the fermentation quality and microbial community of the mixed silage of forage soybean with crop corn or sorghum. Bioresour. Technol, 265, 563–567.

    Article  CAS  Google Scholar 

  33. Xu, D., Wang, N., Rinne, M., Ke, W., Weinberg, Z. G., Da, M., Bai, J., Zhang, Y., Li, F., & Guo, X. (2020). The bacterial community and metabolome dynamics and their interactions modulate fermentation process of whole crop corn silage prepared with or without inoculants. Microb Biotechnol, 14(2), 561–576.

    Article  Google Scholar 

  34. Cai, Y., Benno, Y., Ogawa, M., Ohmomo, S., Kumai, S., & Nakase, T. (1998). Influence of lactobacillus spp. from an inoculant and of Weissella and Leuconostoc spp. from forage crops on silage fermentation. Appl. Environ. Microbiol, 64, 2982–2987.

    Article  CAS  Google Scholar 

  35. Graf, K., Ulrich, A., Idler, C., & Klocke, M. (2016). Bacterial community dynamics during ensiling of perennial ryegrass at two compaction levels monitored by terminal restriction fragment length polymorphism. J. Appl. Microbiol, 120, 1479–1491.

    Article  CAS  Google Scholar 

  36. Bai, J., Xu, D., Xie, D., Wang, M., Li, Z., & Guo, X. (2020). Effects of antibacterial peptide-producing Bacillus subtilis and Lactobacillus buchneri on fermentation, aerobic stability, and microbial community of alfalfa silage. Bioresour Technol, 315, 123881.

    Article  CAS  Google Scholar 

  37. Muck, R. E. (2010) Silage microbiology and its control through additives. Revista Brasileira de Zootecnia, 39.

  38. Ogunade, I. M., Jiang, Y., Pech Cervantes, A. A., Kim, D. H., Oliveira, A. S., Vyas, D., Weinberg, Z. G., Jeong, K. C., & Adesogan, A. T. (2018). Bacterial diversity and composition of alfalfa silage as analyzed by Illumina MiSeq sequencing: Effects of Escherichia coli O157:H7 and silage additives. J. Dairy Sci, 101, 2048–2059.

    Article  CAS  Google Scholar 

  39. Queiroz, O. C., Arriola, K. G., Daniel, J. L., & Adesogan, A. T. (2013). Effects of 8 chemical and bacterial additives on the quality of corn silage. J. Dairy Sci, 96, 5836–5843.

    Article  CAS  Google Scholar 

  40. Hu, Z., Chang, J., Yu, J., Li, S., & Niu, H. (2018). Diversity of bacterial community during ensiling and subsequent exposure to air in whole-plant maize silage. Asian-Australas J Anim Sci, 31, 1464–1473.

    Article  CAS  Google Scholar 

Download references

Funding

This research was funded by the Agroscientific Research in the Public Interest (Project No: 201503134).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Q.W. and R.W.; Data curation: Q.W. and R.W.; Formal analysis: R.W. and C.W.; Funding acquisition: Q.W. and X.Z.; Investigation: Q.W., R.W., C.W., and L.Z.; Resources: X.Z., W.D., Z.Z., L.Z.; Methodology: Q.W. and X.Z.; Project administration: Q.W. and X.Z.; Writing—review and editing: R.W. and C.W.; Validation: Q.W. and X.Z.; Writing—original draft: R.W. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Xinyou Zhang.

Ethics declarations

Ethics Approval

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Wang, R., Wang, C. et al. Effects of Cellulase and Lactobacillus plantarum on Fermentation Quality, Chemical Composition, and Microbial Community of Mixed Silage of Whole-Plant Corn and Peanut Vines. Appl Biochem Biotechnol 194, 2465–2480 (2022). https://doi.org/10.1007/s12010-022-03821-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-03821-y

Keywords

Navigation