Skip to main content
Log in

Screening the Efficacy of Melatonin on Neurodegeneration Mediated by Endoplasmic Reticulum Stress, Inflammation, and Oxidative Damage

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Neurodegeneration may be defined as a clinical condition wherein neurons gradually lose their structural integrity, viability, and functional abilities and the damage inflicted upon the neurons is often irreversible. The various mechanisms that have been observed to contribute to neurodegeneration include aggregation and accumulation of misfolded proteins, impaired autophagy, oxidative damage, neuroinflammation, mitochondrial defects, increased SUMOylation of proteins, impaired unfolded protein response (UPR) pathways, and disruption of axonal transport. Melatonin, a neurohormone, is involved in a variety of functions including scavenging free radicals, synchronizing the circadian rhythm, and mitigating immune response. Melatonin has shown to modulate the UPR pathway, antioxidant pathway through Nrf2 and inflammatory pathway through NFκB. The study aims to determine the efficacy of melatonin on neurodegeneration mediated by endoplasmic reticulum (ER) stress, inflammation, and oxidative damage through in silico approaches. The molecular targets chosen were ATF6, XBP1, PERK, Nrf2, and NFκB and they were docked against melatonin. Melatonin showed to have binding energy with ATF6 as − 4.8 kJ, with PERK as − 3.2 kJ, with XBP1 as − 4.8 kJ, with Nrf2 as − 4.5 kJ, and with that of NFκB as − 4.2 kJ, which implies it interacts well with them. Additionally various physiochemical analyses such as absorption, distribution, metabolism, excretion (ADME) were also carried out. Those analyses revealed that it has an optimal log P of about 1.98, optimal log S of − 2.34, is BBB permeant, has high GI absorption, is not a P-Gp substrate, has a TPSA of 54.12, has a molecular weight of 232.28, and has about 4 rotatable bonds. Also, it showed a bioactivity score of 0.06 for GPCR which implies that it is most likely to exert its function by binding GPCR. The findings imply that melatonin not only shows excellent interactions with the targets but also possesses drug-like physicochemical properties that makes it a valuable choice for the treatment of neurodegenerative disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of Data and Material

Data will be available on request.

Code Availability

Not applicable.

References

  1. Przedborski, S. (2008). Neurodegeneration. Neuroimmune. Pharmacology, 1918, 229–237. https://doi.org/10.1007/978-0-387-72573-4_17

    Article  Google Scholar 

  2. World Health Organization. (2017). Global action plan on the public health response to dementia 2017 - 2025. Geneva: World Health Organization, 52.  http://www.who.int/mental_health/neurology/dementia/action_plan_2017_2025/en/. Accessed 15 Sept 2021

  3. Yacoubian, T. A. (2017). Neurodegenerative disorders: Why do we need new therapies? Alzheimer’s disease. Elsevier Inc. https://doi.org/10.1016/B978-0-12-802810-0.00001-5

    Book  Google Scholar 

  4. Przedborski, S., Vila, M., & Jackson-Lewis, V. (2003). Neurodegeneration: What is it and where are we? Journal of Clinical Investigation, 111(1), 3–10. https://doi.org/10.1172/JCI200317522

    Article  CAS  PubMed Central  Google Scholar 

  5. Jellinger, K. A. (2010). Basic mechanisms of neurodegeneration: A critical update. Journal of Cellular and Molecular Medicine, 14(3), 457–487. https://doi.org/10.1111/j.1582-4934.2010.01010.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Basha, F. H., Waseem, M., & Srinivasan, H. (2021). Cellular and molecular mechanism in neurodegeneration: Possible role of neuroprotectants. Cell Biochemistry and Function, 39(5), 613–622. https://doi.org/10.1002/cbf.3630

    Article  CAS  PubMed  Google Scholar 

  7. Alghamdi, B. S. (2018). The neuroprotective role of melatonin in neurological disorders. Journal of Neuroscience Research, 96(7), 1136–1149. https://doi.org/10.1002/jnr.24220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fernández, A., Ordõñez, R., Reiter, R. J., González-Gallego, J., & Mauriz, J. L. (2015). Melatonin and endoplasmic reticulum stress: Relation to autophagy and apoptosis. Journal of Pineal Research, 59(3), 292–307. https://doi.org/10.1111/jpi.12264

    Article  CAS  PubMed  Google Scholar 

  9. Chen, D., Zhang, T., & Lee, T. H. (2020). Cellular mechanisms of melatonin: Insight from neurodegenerative diseases. Biomolecules, 10(8), 1–26. https://doi.org/10.3390/biom10081158

    Article  Google Scholar 

  10. Rink, C., & Khanna, S. (2011). Significance of brain tissue oxygenation and the arachidonic acid cascade in stroke. Antioxidants and Redox Signaling, 14(10), 1889–1903. https://doi.org/10.1089/ars.2010.3474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Davinelli, S., Maes, M., Corbi, G., Zarrelli, A., Willcox, D. C., & Scapagnini, G. (2016). Dietary phytochemicals and neuro-inflammaging: From mechanistic insights to translational challenges. Immunity and Ageing, 13(1), 1–17. https://doi.org/10.1186/s12979-016-0070-3

    Article  CAS  Google Scholar 

  12. Ahmadi, Z., & Ashrafizadeh, M. (2020). Melatonin as a potential modulator of Nrf2. Fundamental and Clinical Pharmacology, 34(1), 11–19. https://doi.org/10.1111/fcp.12498

    Article  CAS  PubMed  Google Scholar 

  13. Fan, C., Feng, J., Tang, C., Zhang, Z., Feng, Y., Duan, W., … Luo, E. (2020). Melatonin suppresses ER stress-dependent proapoptotic effects via AMPK in bone mesenchymal stem cells during mitochondrial oxidative damage. Stem Cell Research and Therapy, 11(1), 1–22https://doi.org/10.1186/s13287-020-01948-5

  14. Marsh, A. P. (2019). Molecular mechanisms of proteinopathies across neurodegenerative disease: A review. Neurological Research and Practice, 1(1), 1–7. https://doi.org/10.1186/s42466-019-0039-8

    Article  Google Scholar 

  15. Chauhan, N. B., & Mehla, J. (2015). Ameliorative effects of nutraceuticals in neurological disorders. Bioactive nutraceuticals and dietary supplements in neurological and brain disease: Prevention and therapy. Elsevier Inc. https://doi.org/10.1016/B978-0-12-411462-3.00027-8

  16. Xiang, C., Wang, Y., Zhang, H., & Han, F. (2017). The role of endoplasmic reticulum stress in neurodegenerative disease. Apoptosis, 22(1), 1–26. https://doi.org/10.1007/s10495-016-1296-4

    Article  CAS  PubMed  Google Scholar 

  17. Lou, G., Palikaras, K., Lautrup, S., Scheibye-Knudsen, M., Tavernarakis, N., & Fang, E. F. (2020). Mitophagy and neuroprotection. Trends in Molecular Medicine, 26(1), 8–20. https://doi.org/10.1016/j.molmed.2019.07.002

    Article  CAS  PubMed  Google Scholar 

  18. Hetz, C., & Saxena, S. (2017). ER stress and the unfolded protein response in neurodegeneration. Nature Reviews Neurology, 13(8), 477–491. https://doi.org/10.1038/nrneurol.2017.99

    Article  CAS  PubMed  Google Scholar 

  19. Adams, C. J., Kopp, M. C., Larburu, N., Nowak, P. R., & Ali, M. M. U. (2019). Structure and molecular mechanism of ER stress signaling by the unfolded protein response signal activator IRE1. Frontiers in Molecular Biosciences, 6(MAR), 1–12. https://doi.org/10.3389/fmolb.2019.00011

    Article  CAS  Google Scholar 

  20. Scheper, W., & Hoozemans, J. J. M. (2015). The unfolded protein response in neurodegenerative diseases: A neuropathological perspective. Acta Neuropathologica, 130(3), 315–331. https://doi.org/10.1007/s00401-015-1462-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yeganeh, B., Jäger, R., Gorman, A. M., Samali, A., & Ghavami, S. (2015). Induction of autophagy: Role of endoplasmic reticulum stress and unfolded protein response. Autophagy: Cancer, other pathologies, inflammation, immunity, infection, and aging, 7, 91–101. https://doi.org/10.1016/B978-0-12-801043-3.00005-4

    Article  CAS  Google Scholar 

  22. Markouli, M., Strepkos, D., Papavassiliou, A. G., & Piperi, C. (2020). Targeting of endoplasmic reticulum (ER) stress in gliomas. Pharmacological Research, 157(March), 104823. https://doi.org/10.1016/j.phrs.2020.104823

    Article  CAS  PubMed  Google Scholar 

  23. da Silva, D. C., Valentão, P., Andrade, P. B., & Pereira, D. M. (2020). Endoplasmic reticulum stress signaling in cancer and neurodegenerative disorders: Tools and strategies to understand its complexity. Pharmacological Research, 155(February), 104702. https://doi.org/10.1016/j.phrs.2020.104702

    Article  CAS  PubMed  Google Scholar 

  24. Luo, F., Sandhu, A. F., Rungratanawanich, W., Williams, G. E., Akbar, M., Zhou, S., … Wang, X. (2020). Melatonin and autophagy in aging-related neurodegenerative diseases. International Journal of Molecular Sciences, 21(19), 1–31https://doi.org/10.3390/ijms21197174

  25. Srinivasan, V., Pandi-Perumal, S. R., Maestroni, G. J. M., Esquifino, A. I., Hardeland, R., & Cardinali, D. P. (2005). Role of melatonin in neurodegenerative diseases. Neurotoxicity Research, 7(4), 293–318. https://doi.org/10.1007/BF03033887

    Article  CAS  PubMed  Google Scholar 

  26. Haze, K., Yoshida, H., Yanagi, H., Yura, T., & Mori, K. (1999). Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Molecular Biology of the Cell, 10(11), 3787–3799. https://doi.org/10.1091/mbc.10.11.3787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang, P., Li, J., Tao, J., & Sha, B. (2018). The luminal domain of the ER stress sensor protein PERK binds misfolded proteins and thereby triggers PERK oligomerization. Journal of Biological Chemistry, 293(11), 4110–4121. https://doi.org/10.1074/jbc.RA117.001294

    Article  CAS  Google Scholar 

  28. Yoshida, H., Oku, M., Suzuki, M., & Mori, K. (2006). pXBP1(U) encoded in XBP1 pre-mRNA negatively regulates unfolded protein response activator pXBP1(S) in mammalian ER stress response. Journal of Cell Biology, 172(4), 565–575. https://doi.org/10.1083/jcb.200508145

    Article  CAS  Google Scholar 

  29. Furukawa, M., & Xiong, Y. (2005). BTB protein Keap1 targets antioxidant transcription factor Nrf2 for ubiquitination by the Cullin 3-Roc1 ligase. Molecular and Cellular Biology, 25(1), 162–171. https://doi.org/10.1128/mcb.25.1.162-171.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hansen, S. K., Nerlov, C., Zabel, U., Verde, P., Johnsen, M., Baeuerle, P. A., & Blasi, F. (1992). A novel complex between the p65 subunit of NF-κB and c-Rel binds to a DNA element involved in the phorbol ester induction of the human urokinase gene. EMBO Journal, 11(1), 205–213. https://doi.org/10.1002/j.1460-2075.1992.tb05043.x

    Article  CAS  Google Scholar 

  31. Elkington, P., Tebruegge, M., Mansour, S., & Respiratory, S. (2017). Sciences, E., & Unit, A. Tuberculosis. An infection-initiated autoimmune disease ?, 37(12), 815–818. https://doi.org/10.1016/j.it.2016.09.007.Tuberculosis

    Article  Google Scholar 

  32. Cockman, M. E., Lancaster, D. E., Stolze, I. P., Hewitson, K. S., McDonough, M. A., Coleman, M. L., … Ratcliffe, P. J. (2006). Posttranslational hydroxylation of ankyrin repeats in IκB proteins by the hypoxia-inducible factor (HIF) asparaginyl hydroxylase, factor inhibiting HIF (FIH). Proceedings of the National Academy of Sciences of the United States of America, 103(40), 14767–14772https://doi.org/10.1073/pnas.0606877103

  33. Li, Z., Zhang, J., Chen, D., & Shu, H. B. (2003). Casper/c-FLIP is physically and functionally associated with NF-κB1 p105. Biochemical and Biophysical Research Communications, 309(4), 980–985. https://doi.org/10.1016/j.bbrc.2003.08.104

    Article  CAS  PubMed  Google Scholar 

  34. Liu, T., Zhang, L., Joo, D., & Sun, S. C. (2017). NF-κB signaling in inflammation. Signal Transduction and Targeted Therapy, 2(March). https://doi.org/10.1038/sigtrans.2017.23

  35. Ahmed, S. M. U., Luo, L., Namani, A., Wang, X. J., & Tang, X. (2017). Nrf2 signaling pathway: Pivotal roles in inflammation. Biochimica et Biophysica Acta - Molecular Basis of Disease, 1863(2), 585–597. https://doi.org/10.1016/j.bbadis.2016.11.005

    Article  CAS  PubMed  Google Scholar 

  36. Sekar, A., Soundhararajan, R., & Srinivasan, H. (2021). In silico analysis of quercetin and its analogues against targeted proteins. Biointerface Research in Applied Chemistry, 11(5), 13695–13705. https://doi.org/10.33263/BRIAC115.1369513705

    Article  CAS  Google Scholar 

  37. Meng, X. Y., Zhang, H. X., Mezei, M., & Cui, M. (2011). Molecular docking: A powerful approach for structure-based drug discovery. Current computer-aided drug design. Current Computer Aided Drug Design, 7(2), 146–157. Retrieved from https://www.ingentaconnect.com/content/ben/cad/2011/00000007/00000002/art00008%0Ahttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3624763/pdf/nihms412728.pdf

  38. Lindholm, D., Wootz, H., & Korhonen, L. (2006). ER stress and neurodegenerative diseases. Cell Death and Differentiation, 13(3), 385–392. https://doi.org/10.1038/sj.cdd.4401778

    Article  CAS  PubMed  Google Scholar 

  39. Salentin, S., Schreiber, S., Haupt, V. J., Adasme, M. F., & Schroeder, M. (2015). PLIP: Fully automated protein-ligand interaction profiler. Nucleic Acids Research, 43(W1), W443–W447. https://doi.org/10.1093/nar/gkv315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ã, C. A. L. (2004). Lead profiling lead- and drug-like compounds : The rule-of-five revolution, 337–341. https://doi.org/10.1016/j.ddtec.2004.11.007

  41. Ditri, E. L. Z., & J. W. (2017). 乳鼠心肌提取 HHS Public Access. Physiology & behavior, 176(1), 139–148. https://doi.org/10.1016/j.addr.2016.05.007.BDDCS

    Article  Google Scholar 

  42. Li, A. P. (2001). Screening for human ADME/Tox drug properties in drug discovery. Drug Discovery Today, 6(7), 357–366. https://doi.org/10.1016/S1359-6446(01)01712-3

    Article  CAS  PubMed  Google Scholar 

  43. Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7, 1–13. https://doi.org/10.1038/srep42717

    Article  Google Scholar 

  44. Arnott, J. A., & Planey, S. L. (2012). The influence of lipophilicity in drug discovery and design. Expert Opinion on Drug Discovery, 7(10), 863–875. https://doi.org/10.1517/17460441.2012.714363

    Article  CAS  PubMed  Google Scholar 

  45. Savjani, K. T., Gajjar, A. K., & Savjani, J. K. (2012). Drug solubility: Importance and enhancement techniques. ISRN Pharmaceutics, 2012(100 mL), 1–10. https://doi.org/10.5402/2012/195727

    Article  CAS  Google Scholar 

  46. Finch, A., & Pillans, P. (2014). P-glycoprotein and its role in drug-drug interactions. Australian Prescriber, 37(4), 137–139. https://doi.org/10.18773/austprescr.2014.050

    Article  Google Scholar 

  47. Leeson, P. D., & Springthorpe, B. (2007). The influence of drug-like concepts on decision-making in medicinal chemistry. Nature Reviews Drug Discovery, 6(11), 881–890. https://doi.org/10.1038/nrd2445

    Article  CAS  PubMed  Google Scholar 

  48. Lipinski, C. A. (2003). Compound properties and drug quality. The practice of medicinal chemistry: Second edition (Second Edi.). Elsevier Inc. https://doi.org/10.1016/B978-012744481-9/50025-8

  49. Veber, D. F., Johnson, S. R., Cheng, H. Y., Smith, B. R., Ward, K. W., & Kopple, K. D. (2002). Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry, 45(12), 2615–2623. https://doi.org/10.1021/jm020017n

    Article  CAS  PubMed  Google Scholar 

  50. Pajouhesh, H., & Lenz, G. R. (2005). Medicinal chemical properties of successful central nervous system drugs. NeuroRx, 2(4), 541–553. https://doi.org/10.1602/neurorx.2.4.541

    Article  PubMed  PubMed Central  Google Scholar 

  51. Husain, A., Ahmad, A., Khan, S. A., Asif, M., Bhutani, R., & Al-Abbasi, F. A. (2016). Synthesis, molecular properties, toxicity and biological evaluation of some new substituted imidazolidine derivatives in search of potent anti-inflammatory agents. Saudi Pharmaceutical Journal, 24(1), 104–114. https://doi.org/10.1016/j.jsps.2015.02.008

    Article  PubMed  Google Scholar 

  52. Rajasekaran, S., Prasad, P., & Rao, G. K. (2020). iMedPub Journals Molecular Properties and Bio-Activity Score of 2 {[ 2- ( 4-chlorophenyl ) -4- oxoquinazolin-3 ( 4H ) -yl ] amino } -N- ( substitutedphenyl ) acetamides Molinspiration software, 3, 12–14. https://doi.org/10.36648/0975-9344.12.1.153

  53. Lutfiya, A. S., Priya, S., Manzoor, M. A. P., & Hemalatha, S. (2019). Molecular docking and interactions between vascular endothelial growth factor (VEGF) receptors and phytochemicals: An in-silico study. Biocatalysis and Agricultural Biotechnology, 22(October), 101424. https://doi.org/10.1016/j.bcab.2019.101424

    Article  Google Scholar 

  54. Rosenbaum, D. M., Rasmussen, S. G. F., & Kobilka, B. K. (2009). The structure and function of G-protein-coupled receptors. Nature, 459(7245), 356–363. https://doi.org/10.1038/nature08144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are thankful to B.S. Abdur Rahman Institute of Science & Technology, Chennai, for providing research facilities in school of life sciences. The authors also gratefully acknowledge ASEAN University network (AUN)/Southeast Asia Engineering Education Development Network (SEED)/Japan International Cooperation Agency (JICA) SPRAC (SN042/MI.KU/2020).

Author information

Authors and Affiliations

Authors

Contributions

SH conceived and designed research. FHB performed software analyses. All authors wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to S.Hemalatha.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

All authors read and approved for publication.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basha, F.H., S.Hemalatha Screening the Efficacy of Melatonin on Neurodegeneration Mediated by Endoplasmic Reticulum Stress, Inflammation, and Oxidative Damage. Appl Biochem Biotechnol 194, 1105–1119 (2022). https://doi.org/10.1007/s12010-022-03814-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-03814-x

Keywords

Navigation