Skip to main content

Advertisement

Log in

DNA Damage and Expression Profile of Genes Associated with Nephrotoxicity Induced by Butralin and Ameliorating Effect of Arabic Gum in Female Rats

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Nephrotoxicity induced by exposure to environmental pollution, including herbicides, is becoming a global problem. Natural products are the prime alternative scientific research as they express better medicinal activity and minor side effects compared with a variety of synthetic drugs. This study was performed to evaluate the nephroprotective proficiency of Arabic gum against butralin-induced nephrotoxicity. Adult female rats were supplemented with Arabic gum (4.3 g/kg b.wt) and/or butralin (312 mg/L) in drinking water for 30 days. The results found that markers of serum kidney function, oxidative stress biomarkers, DNA damage, and expression of kidney specific genes (Acsm2, Ace, and Ace2) as well as histopathological examination in treated rats were conducted. Butralin-treated rats showed a rise in serum creatinine (41%), BUN (47.3%), and MDA (140.9%) as well as decrease in activity of the antioxidant markers (CAT (−21%); GPx (−70.7%); and TAC (43.2%)) in comparison with the control group. In addition, butralin treatment increased the DNA damage (221%); altered the expression levels of Acsm2, Ace, and Ace2 (−51.6%, 141.6%, and 143% respectively); and elevated histopathological lesions in the kidney tissues. Pretreatment of Arabic gum prevented butralin-prompted degenerative changes of kidney tissues. The results suggested that the protective effect provided by Arabic gum on renal tissues exposed to the herbicide butralin could be attributed to enhancement of antioxidants and increase the free radical scavenging activity in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nie, J., Sun, Y., Zhou, Y., Kumar, M., Usman, M., Li, J., Shao, J., Wang, L., & Tsang, D. C. W. (2020). Bioremediation of water containing pesticides by microalgae: Mechanisms, methods, and prospects for future research. Science of the Total Environment, 707, 136080. https://doi.org/10.1016/j.scitotenv.2019.136080.

    Article  CAS  PubMed  Google Scholar 

  2. Park, H., Lee, J. Y., Park, S., Song, G., & Lim, W. (2019). Developmental toxicity and angiogenic defects of etoxazole exposed zebrafish (Danio rerio) larvae. Aquatic Toxicology, 217, 105324. https://doi.org/10.1016/j.aquatox.2019.105324.

    Article  CAS  PubMed  Google Scholar 

  3. Curl, C. L., Spivak, M., Phinney, R., & Montrose, L. (2020). Synthetic pesticides and health in vulnerable populations: Agricultural workers. Current Environmental Health Reports, 7(1), 13–29. https://doi.org/10.1007/s40572-020-00266-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rocha, G. M., & Grisolia, C. K. (2019). Why pesticides with mutagenic, carcinogenic and reproductive risks are registered in Brazil. Developing World Bioethics, 19(3), 148–154. https://doi.org/10.1111/dewb.12211.

    Article  PubMed  Google Scholar 

  5. Suvorov, A., Salemme, V., McGaunn, J., Poluyanoff, A., Teffera, M., & Amir, S. (2021). Unbiased approach for the identification of molecular mechanisms sensitive to chemical exposures. Chemosphere, 262, 128362. https://doi.org/10.1016/j.chemosphere.2020.128362.

    Article  CAS  PubMed  Google Scholar 

  6. Yigit, N., & Velioglu, Y. S. (2020). Effects of processing and storage on pesticide residues in foods. Critical Reviews in Food Science and Nutrition, 60(21), 3622–3641. https://doi.org/10.1080/10408398.2019.1702501.

    Article  CAS  PubMed  Google Scholar 

  7. Badr, A. M. (2020). Organophosphate toxicity: Updates of malathion potential toxic effects in mammals and potential treatments. Environmental Science and Pollution Research, 27(21), 26036–26057. https://doi.org/10.1007/s11356-020-08937-4.

    Article  CAS  PubMed  Google Scholar 

  8. Samir, D., Selma, R. M. O., & Asma, S. (2020). The effect of herbicide metribuzin on environment and human: A systematic review. Pharmaceutical and Biosciences Journal, 8(4), 10–15. https://doi.org/10.20510/ukjpb/8/i4/1593522789.

    Article  CAS  Google Scholar 

  9. Banerjee, P., & Bhattacharya, J. (2019). Impact of oxidative stress on infertility, with emphasis on infertility management strategie. Global Journal of Fertility and Research, 4(1), 010–018. https://doi.org/10.17352/gjfr.0000.

    Article  Google Scholar 

  10. Intayoung, U., Wunnapuk, K., Kohsuwan, K., Sapbamrer, R., & Khacha-ananda, S. (2021). effect of occupational exposure to herbicides on oxidative stress in sprayers. Safety and Health at Work, 12(1), 127–132. https://doi.org/10.1016/j.shaw.2020.09.011.

    Article  PubMed  Google Scholar 

  11. Ali, N. E., Kaddam, L. A., Alkarib, S. Y., Kaballo, B. G., Khalid, S. A., Higawee, A., AbdElhabib, A., AlaaAldeen, A., Phillips, A. O., & Saeed, A. M. (2020). Gum Arabic (Acacia senegal) augmented total antioxidant capacity and reduced C-reactive protein among haemodialysis patients in phase II trial. International Journal of Nephrology, 2020, 7214673–7214677. https://doi.org/10.1155/2020/7214673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hasanuzzaman, M., Bhuyan, M. H. M. B., Zulfiqar, F., Raza, A., Mohsin, S. M., Al Mahmud, J., Fujita, M., & Fotopoulos, V. (2020). Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants, 9(8), 681. https://doi.org/10.3390/antiox9080681.

    Article  CAS  PubMed Central  Google Scholar 

  13. T. Cheradid, M. Guessoum, Study of risk factors and predictive markers of chronic kidney disease (CKD) in Djamaa hemodialysis patients, and assessment of water quality effect (major risk factor) on kidney function in rats Wistar. University of Eloued DSpace, (2019) http://dspace.univ-eloued.dz/handle/123456789/4150

  14. Kaur, M., & Kaur, M. (2017). Oxidative stress response in liver, kidney and gills of ctenopharyngodon idellus (cuvier & valenciennes) exposed to chlorpyrifos. MOJ Biology and Medicine, 1(4), 103–112. https://doi.org/10.15406/mojbm.2017.01.00021.

    Article  Google Scholar 

  15. Mossa, A. T. H., Swelam, E. S., & Mohafrash, S. M. (2015). Sub-chronic exposure to fipronil induced oxidative stress, biochemical and histopathological changes in the kidney and kidney of male albino rats. Toxicology Reports, 2, 775–784. https://doi.org/10.1016/j.toxrep.2015.02.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cortés-Iza, S. C., & Rodríguez, A. I. (2018). Oxidative stress and pesticide disease: a challenge for toxicology. Revista de la Facultad de Medicina, 66(2), 261–267. https://doi.org/10.15446/revfacmed.v66n2.60783.

    Article  Google Scholar 

  17. Mansour, S. A. K., & Gamet-Payrastre, L. (2016). Ameliorative effect of vitamin E to mouse dams and their pups following exposure of mothers to chlorpyrifos during gestation and lactation periods. Toxicology and Industrial Health, 32(7), 1179–1196. https://doi.org/10.1177/0748233714548207.

    Article  CAS  PubMed  Google Scholar 

  18. Fetoui, H., Makni, M., Garoui, E., & Zeghal, N. (2010). Toxic effects of lambda-cyhalothrin, a synthetic pyrethroid pesticide, on the rat kidney: Involvement of oxidative stress and protective role of ascorbic acid. Experimental and Toxicologic Pathology, 62(6), 593–599. https://doi.org/10.1016/j.etp.2009.08.004.

    Article  CAS  PubMed  Google Scholar 

  19. Byrd, R. A., Marham, J. K., & John, L. (1995). Developmental toxicity of dinitroaniline herbicides in rats and rabbits: Trifluralin. Toxicological Sciences, 26(2), 181–190. https://doi.org/10.1093/toxsci/26.2.181.

    Article  CAS  Google Scholar 

  20. Dauqan, E., & Abdullah, A. (2013). Utilization of gum Arabic for industries and human health. American Journal of Applied Sciences, 10(10), 1270–1279. https://doi.org/10.3844/ajassp.2013.1270.1279.

    Article  Google Scholar 

  21. Mohammed, A. M. E. (2017). Estimation of the active components in gum Arabic collected from Western Sudan. International Journal of Science and Research, 6(3), 1695. https://doi.org/10.21275/ART20171695.

    Article  Google Scholar 

  22. Al-Majed, A. A., Mostafa, A. M., Al-Rikabi, A. C., & Al-Shabanah, O. A. (2002). Protective effects of oral Arabic gum administration on gentamicin- induced nephrotoxicity in rats. Pharmacological Research, 46(5), 445–451. https://doi.org/10.1016/s1043661802001251.

    Article  CAS  PubMed  Google Scholar 

  23. Elamin, S., Alkhawaja, M. J., Bukhamsin, A. Y., Idris, M. A. S., Abdelrahman, M. M., Abutaleb, N. K., & Housawi, A. A. (2017). Gum Arabic reduces C-reactive protein in chronic kidney disease patients without affecting urea or indoxyl sulfate levels. International Journal of Nephrology, 2017, 950170. https://doi.org/10.1155/2017/9501470.

    Article  CAS  Google Scholar 

  24. Ramsammy, L., Ling, K. Y., Josepovitz, C., Levine, R., & Kaloyanides, G. J. (1985). Effect of gentamicin on lipid peroxidation in rat renal cortex. Biochemical Pharmacology, 34(21), 3895–3900. https://doi.org/10.1016/0006-2952(85)90441-1.

    Article  CAS  PubMed  Google Scholar 

  25. Salahudeen, A. K., Clark, E. C., & Nath, K. A. (1991). Hydrogen peroxide-induced renal injury. A protective role for pyruvate in vitro and in vivo. The Journal of Clinical Investigation, 88(6), 1886–1893. https://doi.org/10.1172/JCI115511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Said, A. M., Atwa, S. A. E., & Khalifa, O. A. (2019). Ameliorating effect of gum Arabic and lemongrass on chronic kidney disease induced experimentally in rats. Bulletin of the National Research Centre, 43(1), 43–47. https://doi.org/10.1186/s42269-019-0.

    Article  Google Scholar 

  27. NRC. (1996). Guide for the care and use of laboratory animals. In National Academic Research Council. Acad. Press http://www.nap.edu.

  28. Refaie, A. A., Ramadan, A., Sabry, N. M., Khalil, W. K. B., & Mossa, A. T. H. (2020). Over-gene expression in the apoptotic, oxidative damage and liver injure in female rats exposed to butralin. Environmental Science and Pollution Research, 27(25), 31383–31393. https://doi.org/10.1007/s11356-020-09416-6.

    Article  CAS  PubMed  Google Scholar 

  29. Tomlin, C. D. S. (2015). The pesticide manual (17th ed.). The British Crop Protection Council ISBN: 9781901396881.

  30. Tietz, N. M., Pruden, E. L., & Siggaard-Andersen, O. (1994). Electrolytes. In C. A. Burtis & E. R. Ashwood (Eds.), Tietz textbook of clinical chemistry (pp. 1354–1374). WB Saunders Company ISBN: 0721644724.

  31. Henry, R. J. (1974). Clinical chemistry. In Principles and techniques (2nd ed.). Harper and Row Publishers ISBN: 0061411817 9780061411816.

  32. Nishikimi, M., Rao, N. A., & Yagi, K. (1972). The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochemical and Biophysical Research Communications, 46(2), 849–854. https://doi.org/10.1016/S0006-291X(72)80218-3.

    Article  CAS  PubMed  Google Scholar 

  33. Aebi, H. (1984). Catalase in vitro. Methods in Enzymology, 105, 121–126. https://doi.org/10.1016/s0076-6879(84)05016-3.

    Article  CAS  PubMed  Google Scholar 

  34. Miller, N. J., Rice-Evans, C., Davies, M. J., Gopinathan, V., & Milner, A. (1993). A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clinical Science (London, England), 84(4), 407–412. https://doi.org/10.1042/cs0840407.

    Article  CAS  Google Scholar 

  35. Paglia, D. E., & Valentine, W. N. (1967). Studies on the quantitative and quali- tative characterization of erythrocyte glutathione peroxidase. The Journal of Laboratory and Clinical Medicine, 70(1), 158–169. https://doi.org/10.1007/s40200-020-00615-z.

    Article  CAS  PubMed  Google Scholar 

  36. Blasiak, J., Arabski, M., Krupa, R., Wozniak, K., Zadrozny, M., Kasznikcki, J., Zurawska, M., & Drzewoski, J. (2004). DNA damage and repair in type 2 diabetes mellitus. Mutation Research, 554(1–2), 297–304. https://doi.org/10.1016/j.mrfmmm.2004.05.011.

    Article  CAS  PubMed  Google Scholar 

  37. Khalil, W. K. B., Booles, H. F., Hafiz, N. A., & El-Bassyouni, G. E. (2018). Ameliorative effects of brachidontes variabilis calcium carbonate against bone loss in ovariectomized rats. International Journal of Pharmacology, 14(4), 477–487. https://doi.org/10.3923/ijp.2018.477.487.

    Article  CAS  Google Scholar 

  38. Nwani, C. D., Nagpure, N. S., Kumar, R., Kushwaha, B., Kumar, P., & Lakra, W. S. (2011). Mutagenic and genotoxic assessment of atrazine-based herbicide to freshwater fish Channa puntatus (Bloch) using micronucleus test and single cell gel electrophoresis. Environmental Toxicology and Pharmacology, 31(2), 314–322. https://doi.org/10.1016/j.etap.2010.12.001.

    Article  CAS  PubMed  Google Scholar 

  39. Menez, S., & Parikh, C. R. (2019). Assessing the health of the nephron in acute kidney injury: Biomarkers of kidney function and injury. Current Opinion in Nephrology and Hypertension, 28(6), 560–566. https://doi.org/10.1097/MNH.0000000000000538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Refaie, A. A. E. R., Ramadan, A., & Mossa, A. T. H. (2014). Oxidative damage and nephrotoxicity induced by prallethrin in rat and the protective effect of Origanum majorana essential oil. Asian Pacific Journal of Tropical Medicine, 7(1), S506–S513. https://doi.org/10.1016/S1995-7645(14)60282-0.

    Article  Google Scholar 

  41. Mossa, A. T. H., Rasoul, M. A. A., & Mohafrash, S. M. (2017). Lactational exposure to abamectin induced mortality and adverse biochemical and histopathological effects in suckling pups. Environmental Science and Pollution Research, 24(11), 10150–10165. https://doi.org/10.1007/s11356-017-8600-x.

    Article  CAS  PubMed  Google Scholar 

  42. Tan, D., Wang, Y., Bai, B., Yang, X., & Han, J. (2015). Betanin attenuates oxidative stress and inflammatory reaction in kidney of paraquat-treated rat. Food and Chemical Toxicology, 78, 141–146. https://doi.org/10.1016/j.fct.2015.01.018.

    Article  CAS  PubMed  Google Scholar 

  43. Pham-Huy, L. A., He, H., & Pham-Huy, C. (2008). Free radicals, antioxidants in disease and health. International Journal of Biomedical Science : IJBS, 4(2), 89–96. PMID: 23675073.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang, S., Guo, W., & Ren, J. (2016). Stress signaling in paraquat-induced target organ toxicity. Reactive Oxygen Species, 1, 131–140. https://doi.org/10.20455/ros.2016.827.

    Article  CAS  Google Scholar 

  45. Hilgers, K. F., Nagaraj, S. K., Karginova, E. A., Kazakova, I. G., Chevalier, R. L., Carey, R. M., Pentz, E. S., & Gomez, R. A. (1998). Molecular cloning of KS, a novel rat gene expressed exclusively in the kidney. Kidney International, 54, 1444–1454. https://doi.org/10.1046/j.1523-1755.1998.00143.x.

    Article  CAS  PubMed  Google Scholar 

  46. Watanabe, H., Paxton, R. L., Tolerico, M. R., Nagalakshmi, V. K., Tanaka, S., Okusa, M. D., Goto, S., Narita, I., Watanabe, S., Sequeira-Lοpez, M. L. S., & Gomez, R. A. (2020). Expression of Acsm2, a kidney-specific gene, parallels the function and maturation of proximal tubular cells. American Journal of Physiology. Renal Physiology, 319(4), F603–F611. https://doi.org/10.1152/ajprenal.00348.2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gomez, R. A., Sequeira Lopez, M. L., Fernandez, L., Cherñavvsky, D. R., & Norwood, V. F. (1999). The maturing kidney: Development and susceptibility. Renal Failure, 21(3-4), 283–291. https://doi.org/10.3109/08860229909085090.

    Article  CAS  PubMed  Google Scholar 

  48. Donoghue, M., Hsieh, F., Baronas, E., Godbout, K., Gosselin, M., Stagliano, N., Donovan, M., Woolf, B., Robison, K., Jeyaseelan, R., Breitbart, R. E., & Acton, S. (2000). A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1–9. Circulation Research, 87(5), E1–E9. https://doi.org/10.1161/01.res.87.5.e1.

    Article  CAS  PubMed  Google Scholar 

  49. Mizuiri, S., & Ohashi, Y. (2015). ACE and ACE2 in kidney disease. World Journal of Nephrology, 4(1), 74–82. https://doi.org/10.5527/wjn.v4.i1.74.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Burrell, L. M., Johnston, C. I., Tikellis, C., & Cooper, M. E. (2004). ACE2, a new regulator of the renin-angiotensin system. Trends in Endocrinology and Metabolism, 15(4), 166–169. https://doi.org/10.1016/j.tem.2004.03.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ferrario, C. M. (2006). Angiotensin-converting enzyme 2 and angiotensin-(1–7): An evolving story in cardiovascular regulation. Hypertension, 47(3), 515–521. https://doi.org/10.1161/01.HYP.0000196268.08909.fb.

    Article  CAS  PubMed  Google Scholar 

  52. Tallant, E. A., & Clark, M. A. (2003). Molecular mechanisms of inhibition of vascular growth by angiotensin-(1–7). Hypertension, 42(4), 574–579. https://doi.org/10.1161/01.HYP.0000090322.55782.30.

    Article  CAS  PubMed  Google Scholar 

  53. Gado, A. M., & Aldahmash, B. A. (2013). Antioxidant effect of Arabic gum against mercuric chloride-induced nephrotoxicity. Drug Design, Development and Therapy, 7, 1245–1252. https://doi.org/10.2147/DDDT.S50928.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ali, B. H., Al-Husseni, I., Beegam, S., Al-Shukaili, A., Nemmar, A., Schierling, S., Queisser, N., & Schupp, N. (2013). Effect of gum arabic on oxidative stress and inflammation in adenine-induced chronic renal failure in rat. PLoS One, 8(2), e55242. https://doi.org/10.1371/journal.pone.0055242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hammad, F. T., Al Salam, S., Nemmar, A., Ali, M., & Lubbad, L. (2019). The effect of Arabic gum on renal function in reversible unilateral ureteric obstruction. Biomolecules, 9(1), 25. https://doi.org/10.3390/biom9010025.

    Article  CAS  PubMed Central  Google Scholar 

  56. Al Za’abi, M., Al Busaidi, M., Yasin, J., Schupp, N., Nemmar, A., & Ali, B. H. (2015). Development of a new model for the induction of chronic kidney disease via intraperitoneal adenine administration, and the effect of treatment with gum acacia thereon. American Journal of Translational Research, 7(1), 28–38 PMCID: PMC4346521.

    PubMed  PubMed Central  Google Scholar 

  57. Abd-Allah, A. R., Al-Majed, A. A., Mostafa, A. M., Al-Shabanah, O. A., Din, A. G., & Nagi, M. N. (2002). Protective effect of Arabic gum against cardiotoxicity induced by doxorubicin in mice: a possible mechanism of protection. Journal of Biochemical and Molecular Toxicology, 16(5), 254–259. https://doi.org/10.1002/jbt.10046.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful for the National Research Centre-Cairo, Egypt, for supporting this study.

Availability of Data and Materials

All data and materials are available.

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed equally in this work.

Corresponding author

Correspondence to Aziza B. Shalby.

Ethics declarations

Conflict of Interests

The authors declare no competing interests.

Ethical Approval

All applicable international, national, and/or institutional guidelines for care and use of animals were followed.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Refaie, A.A., Shalby, A.B., Kassem, S.M. et al. DNA Damage and Expression Profile of Genes Associated with Nephrotoxicity Induced by Butralin and Ameliorating Effect of Arabic Gum in Female Rats. Appl Biochem Biotechnol 193, 3454–3468 (2021). https://doi.org/10.1007/s12010-021-03607-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03607-8

Keywords

Navigation