Skip to main content
Log in

Overexpression of Dioxygenase Encoding Gene Accelerates the Phenolic Aldehyde Conversion and Ethanol Fermentability of Zymomonas mobilis

  • Short Communication
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

NADH-dependent reductase enzyme catalyzes the phenolic aldehyde conversion and correspondingly improves the ethanol fermentability of the ethanologenic Zymomonas mobilis. This study constructed the transcriptional landscape of mono/dioxygenase genes in Z. mobilis ZM4 under the stress of the toxic phenolic aldehyde inhibitors of 4-hydroxybenzaldehyde, syringaldehyde, and vanillin. One specific dioxygenase encoding gene ZMO1721 was differentially expressed by 3.07-folds under the stress of 4-hydroxybenzaldehyde among the eleven mono/dioxygenase genes. The purified ZMO1721 shared 99.9% confidence and 48.0% identity with the oxidoreductase in Rhodoferax ferrireducens T118 was assayed and the NADH-dependent reduction activity was confirmed for phenolic aldehyde vanillin conversion. The ZMO1721 gene was then overexpressed in Z. mobilis ZM4 and the 4-hydroxybenzaldehyde conversion rate was accelerated. The cell growth, glucose consumption, and ethanol productivity of Z. mobilis ZM4 were also improved by ZMO1721 overexpression. The genes identified on improving phenolic aldehyde tolerance and ethanol fermentability in this study could be used as the synthetic biology tools for modification of ethanologenic strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Larsson, S., Quintana-Sainz, A., Reimann, A., Nilvebrant, N. O., & Jonsson, L. J. (2000). Influence of lignocellulose-derived aromatic compounds on oxygen-limited growth and ethanolic fermentation by Saccharomyces cerevisiae. Applied Biochemistry and Biotechnology, 84–86, 617–632.

    Article  Google Scholar 

  2. Jing, X., Zhang, X., & Bao, J. (2009). Inhibition performance of lignocellulose degradation products on industrial cellulase enzymes during cellulose hydrolysis. Applied Biochemistry and Biotechnology, 159(3), 696–707.

    Article  CAS  Google Scholar 

  3. Klinke, H. B., Thomsen, A. B., & Ahring, B. K. (2004). Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Applied Microbiology and Biotechnology, 66(1), 10–26.

    Article  CAS  Google Scholar 

  4. Dong, H., & Bao, J. (2010). Metabolism: biofuel via biodetoxification. Nature Chemical Biology, 6(5), 316–318.

    Article  CAS  Google Scholar 

  5. Franden, M. A., Pilath, H. M., Mohagheghi, A., Pienkos, P. T., & Zhang, M. (2013). Inhibition of growth of Zymomonas mobilis by model compounds found in lignocellulosic hydrolysates. Biotechnology for Biofuels, 6(1), 99.

    Article  CAS  Google Scholar 

  6. Yi, X., Gu, H., Gao, Q., Liu, Z. L., & Bao, J. (2015). Transcriptome analysis of Zymomonas mobilis ZM4 reveals mechanisms of tolerance and detoxification of phenolic aldehyde inhibitors from lignocellulose pretreatment. Biotechnology for Biofuels, 8(1), 153.

    Article  Google Scholar 

  7. Zhang, M., Eddy, C., Deanda, K., Finkelstein, M., & Picataggio, S. (1995). Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Science., 267(5195), 240–243.

    Article  CAS  Google Scholar 

  8. Rogers, P. L., Jeon, Y. J., Lee, K. J., & Lawford, H. G. (2007). Zymomonas mobilis for fuel ethanol and higher value products. Advances in Biochemical Engineering/Biotechnology, 108, 263–288.

    Article  CAS  Google Scholar 

  9. Harayama, S., Kok, M., & Neidle, E. L. (1992). Functional and evolutionary relationships among diverse oxygenases. Annual Review of Microbiology, 46(1), 565–601.

    Article  CAS  Google Scholar 

  10. Morya, R., Kumar, M., Singh, S. S., & Thakur, I. S. (2019). Genomic analysis of Burkholderia sp. ISTR5 for biofunneling of lignin-derived compounds. Biotechnology for Biofuels, 12, 277.

    Article  CAS  Google Scholar 

  11. Yong, Y. C., & Zhong, J. J. (2013). Regulation of aromatics biodegradation by rhl quorum sensing system through induction of catechol meta-cleavage pathway. Bioresource Technology, 136, 761–765.

    Article  CAS  Google Scholar 

  12. Wuddineh, W. A., Mazarei, M., Zhang, J., Poovaiah, C. R., Mann, D. G. J., Ziebell, A., Sykes, R. W., Davis, M. F., Udvardi, M. K., & Tewart Jr., C. N. (2015). Identification and overexpression of gibberellin 2-oxidase (GA2ox) in switchgrass (Panicum virgatum L.) for improved plant architecture and reduced biomass recalcitrance. Plant Biotechnol. J., 13(5), 636–647.

    CAS  Google Scholar 

  13. Kumar, M., Verma, S., Gazara, R. K., Kumar, M., Pandey, A., Verma, P. V., & Thakur, I. S. (2018). Genomic and proteomic analysis of lignin degrading and polyhydroxyalkanoate accumulating β-proteobacterium Pandoraea sp. ISTKB. Biotechnology for Biofuels, 11(1), 154.

    Article  Google Scholar 

  14. Lu, Y., Yang, Q., Lin, Z., & Yang, X. (2020). A modular pathway engineering strategy for the high-level production of β-ionone in Yarrowia lipolytica. Microbial Cell Factories, 19(1), 49.

    Article  CAS  Google Scholar 

  15. Foo, J. L., Susanto, A. V., Keasling, J. D., Leong, S. S., & Chang, M. W. (2017). Whole-cell biocatalytic and de novo production of alkanes from free fatty acids in Saccharomyces cerevisiae. Biotechnology and Bioengineering, 114(1), 232–237.

    Article  CAS  Google Scholar 

  16. Vaillancourt, F. H., Bolin, J. T., & Eltis, L. D. (2006). The ins and outs of ring-cleaving dioxygenases. Critical Reviews in Biochemistry and Molecular Biology, 41(4), 241–267.

    Article  CAS  Google Scholar 

  17. Seo, J. S., Chong, H., Park, H. S., Yoon, K. O., Jung, C., Kim, J. J., Hong, J. H., Kim, H., Kim, J. H., Kil, J. I., Park, C. J., Oh, H. M., Lee, J. S., Jin, S. J., Um, H. W., Lee, H. J., Oh, S. J., Kim, J. Y., Kang, H. L., Lee, S. Y., Lee, K. J., & Kang, H. S. (2005). The genome sequence of the ethanologenic bacterium Zymomonas mobilis ZM4. Nature Biotechnology, 23(1), 63–68.

    Article  CAS  Google Scholar 

  18. Yang, S., Pappas, K. M., Hauser, L. J., Land, M. L., Chen, G. L., Hurst, G. B., Pan, C., Kouvelis, V. N., Typas, M. A., Pelletier, D. A., Klingeman, D. M., Chang, Y. J., Samatova, N. F., & Brown, S. D. (2009). Improved genome annotation for Zymomonas mobilis. Nature Biotechnology, 27(10), 893–894.

    Article  CAS  Google Scholar 

  19. Dong, H. W., Bao, J., Ryu, D. D., & Zhong, J. J. (2011). Design and construction of improved new vectors for Zymomonas mobilis recombinants. Biotechnology and Bioengineering, 108(7), 1616–1627.

    Article  CAS  Google Scholar 

  20. Yi, X., Gao, Q., & Bao, J. (2019). Expressing an oxidative dehydrogenase gene in ethanologenic strain Zymomonas mobilis promotes the cellulosic ethanol fermentability. Journal of Biotechnology, 303, 1–7.

    Article  CAS  Google Scholar 

  21. Abd E-Mawla, A. M., & Beerhues, L. (2002). Benzoic acid biosynthesis in cell cultures of Hypericum androsaemum. Planta., 214(5), 727–733.

    Article  Google Scholar 

  22. Park, S. E., Koo, H. M., Park, Y. K., Park, S. M., Park, J. C., Lee, O. K., Park, Y. C., & Seo, J. H. (2011). Expression of aldehyde dehydrogenase 6 reduces inhibitory effect of furan derivatives on cell growth and ethanol production in Saccharomyces cerevisiae. Bioresource Technology, 102(10), 6033–6038.

    Article  CAS  Google Scholar 

  23. Van de Guchte, M., van der Vossen, J. M., Kok, J., & Venema, G. (1989). Construction of a lactococcal expression vector: expression of hen egg white lysozyme in Lactococcus lactis subsp. lactis. Applied and Environmental Microbiology, 55(1), 224–228.

    Article  Google Scholar 

  24. Klinke, H. B., Ahring, B. K., Schmidt, A. S., & Thomsen, A. B. (2002). Characterization of degradation products from alkaline wet oxidation of wheat straw. Bioresource Technology, 82(1), 15–26.

    Article  CAS  Google Scholar 

  25. Varga, E., Klinke, H. B., Réczey, K., & Thomsen, A. B. (2004). High solid simultaneous saccharification and fermentation of wet oxidized corn stover to ethanol. Biotechnology and Bioengineering, 88(5), 567–574.

    Article  CAS  Google Scholar 

  26. Dror, A., & Fishman, A. (2012). Engineering non-heme mono- and dioxygenases for biocatalysis. Computational and Structural Biotechnology Journal, 2(3), e201209011.

    Article  Google Scholar 

  27. Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N., & Sternberg, M. J. E. (2015). The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols, 10(6), 845–858.

    Article  CAS  Google Scholar 

  28. Urlacher, V. B., & Schmid, R. D. (2006). Recent advances in oxygenase-catalyzed biotransformations. Current Opinion in Chemical Biology, 10(2), 156–161.

    Article  CAS  Google Scholar 

  29. Nishizawa, A., Harada, A., Senda, M., Tachihara, Y., Muramatsu, D., Kishigami, S., Mori, S., Sugiyama, K., Senda, T., & Kimura, S. (2014). Complete pyridine-nucleotide-specific conversion of an NADH-dependent ferredoxin reductase. Biochemical Journal, 462(2), 257–265.

    Article  CAS  Google Scholar 

  30. Singh, N., Dalal, V., Kumar, V., Sharma, M., & Kumar, P. (2019). Characterization of phthalate reductase from Ralstonia eutropha CH34 and in silico study of phthalate dioxygenase and phthalate reductase interaction. Journal of Molecular Graphics & Modelling, 90, 161–170.

    Article  CAS  Google Scholar 

  31. Cirino, P. C., & Arnold, F. H. (2002). Protein engineering of oxygenases for biocatalysis. Current Opinion in Chemical Biology, 6(2), 130–135.

    Article  CAS  Google Scholar 

  32. Torres Pazmiño, D. E., Winkler, M., Glieder, A., & Fraaije, M. W. (2010). Monooxygenases as biocatalysts: Classification, mechanistic aspects and biotechnological applications. Journal of Biotechnology, 146(1-2), 9–24.

    Article  Google Scholar 

  33. Han, R., Haning, K., Gonzalez-Rivera, J. C., Yang, Y., Li, R., Cho, S. H., Huang, J., Simonsen, B. A., Yang, S., & Contreras, L. M. (2020). Multiple small RNAs interact to co-regulate ethanol tolerance in Zymomonas mobilis. Frontiers in Bioengineering and Biotechnology, 8, 155.

    Article  Google Scholar 

  34. Nouri, H., Moghimi, H., Marashi, S. A., & Elahi, E. (2020). Impact of hfq and sigE on the tolerance of Zymomonas mobilis ZM4 to furfural and acetic acid stresses. PLoS One, 15(10), e0240330.

    Article  CAS  Google Scholar 

  35. Gao, X., Gao, Q., & Bao, J. (2018). Improving cellulosic ethanol fermentability of Zymomonas mobilis by overexpression of sodium ion tolerance gene ZMO0119. Journal of Biotechnology, 282, 32–37.

    Article  CAS  Google Scholar 

  36. Wang, J. L., Wu, B., Qin, H., You, Y., Liu, S., Shui, Z. X., Tan, F. R., Wang, Y. W., Zhu, Q. L., Li, Y. B., Ruan, Z. Y., Ma, K. D., Dai, L. C., Hu, G. Q., & He, M. X. (2016). Engineered Zymomonas mobilis for salt tolerance using EZ-Tn5-based transposon insertion mutagenesis system. Microbial Cell Factories, 15(1), 101.

    Article  Google Scholar 

  37. Fuchino, K., & Bruheim, P. (2020). Increased salt tolerance in Zymomonas mobilis strain generated by adaptative evolution. Microbial Cell Factories, 19(1), 147.

    Article  CAS  Google Scholar 

  38. Wang, W., Wu, B., Qin, H., Liu, P., Qin, Y., Duan, G., Hu, G., & He, M. (2019). Genome shuffling enhances stress tolerance of Zymomonas mobilis to two inhibitors. Biotechnology for Biofuels, 12(1), 288.

    Article  CAS  Google Scholar 

Download references

Availability of Data and Materials

The data and materials that support the findings of this study are available from the corresponding author upon reasonable request.

Funding

This research was supported by Natural Science Foundation of Jiangxi (20192BAB204002), Open Funding Project of the State Key Laboratory of Bioreactor Engineering, and Doctor Science Research Foundation of Jiujiang University (8879524).

Author information

Authors and Affiliations

Authors

Contributions

XY and WW designed the experiment and drafted the manuscript. XY, JM, and LL carried out the experiment. WW and XY were in charge of the overall project. All authors read and approved to publish the final manuscript.

Corresponding author

Correspondence to Xia Yi.

Ethics declarations

Ethical Statement

The article does not contain any studies with human participants performed by any of the authors.

Consent to Participate

Not applicable.

Consent for Publication

All authors are aware of the content and agree with the submission.

Conflict of Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, X., Mei, J., Lin, L. et al. Overexpression of Dioxygenase Encoding Gene Accelerates the Phenolic Aldehyde Conversion and Ethanol Fermentability of Zymomonas mobilis. Appl Biochem Biotechnol 193, 3017–3027 (2021). https://doi.org/10.1007/s12010-021-03551-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03551-7

Keywords

Navigation