Skip to main content
Log in

Capability Enhancement of Fumaric Acid Production by Rhizopus arrhizus Through Carbon-Nitrogen Sources Coordination

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Fumaric acid production from the fermentation process by Rhizopus was considered a potential method. But poor conversion efficiency and low space-time productivity greatly hampered industrial production. Here, we reported improving these problems through carbon-nitrogen sources coordination optimization strategy. Five commonly used nitrogen sources were selected to conduct element analysis and fermentation efficiency comparison. Casein was proven to be the optimum nitrogen source and further investigated in a stirred-tank reactor. It showed that the fermentation cycle was significantly shortened by the application of casein. Combined with optimization of glucose content, the space-time productivity of fumaric acid reached 0.76 g/L h with a yield to 0.31 g/g glucose, which was the highest among the results gotten in the stirred-tank reactor. It illustrated that carbon-nitrogen sources coordination optimization strategy was in favor of the improvement of the fermentation process and laid a promising foundation for the development of fumaric acid industrial production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Papadaki, A., Papapostolou, H., Alexandri, M., Kopsahelis, N., Papanikolaou, S., de Castro, A. M., Freire, D. M., & Koutinas, A. A. (2018). Fumaric acid production using renewable resources from biodiesel and cane sugar production processes. Environemental Science and Pollution Research, 25(36), 35960–35970.

    Article  CAS  Google Scholar 

  2. Guo, F., Wu, M., Dai, Z., Zhang, S., Zhang, W., Dong, W., Zhou, J., Jiang, M., & Xin, F. (2020). Current advances on biological production of fumaric acid. Biochemical Engineering Journal, 153, 107397.

    Article  CAS  Google Scholar 

  3. Xu, Q., Li, S., Huang, H., & Wen, J. (2012). Key technologies for the industrial production of fumaric acid by fermentation. Biotechnology Advances, 30(6), 1685–1696.

    Article  CAS  Google Scholar 

  4. Liu, H., Hu, H., Jin, Y., Yue, X., Deng, L., Wang, F., & Tan, T. (2017). Co-fermentation of a mixture of glucose and xylose to fumaric acid by Rhizopus arrhizus RH 7-13-9#. Bioresource Technology, 233, 30–33.

    Article  CAS  Google Scholar 

  5. Ye, H.-M., Wang, R.-D., Liu, J., Xu, J., & Guo, B.-H. (2012). Isomorphism in poly(butylene succinate-co-butylene fumarate) and its application as polymeric nucleating agent for poly(butylene succinate). Macromolecules, 45(14), 5667–5675.

    Article  CAS  Google Scholar 

  6. Martin-Dominguez, V., Estevez, J., Ojembarrena, F. D. B., Santos, V. E., & Ladero, M. (2018). Fumaric acid production: A biorefinery perspective. Fermentation, 4, 33.

    Article  Google Scholar 

  7. Wang, M., Dewil, R., Maniatis, K., Wheeldon, J., Tan, T., Baeyens, J., & Fang, Y. (2019). Biomass-derived aviation fuels: Challenges and perspective. Progress in Energy and Combustion Science, 74, 31–49.

    Article  Google Scholar 

  8. Kong, W., Baeyens, J., Qin, P., Zhang, H., & Tan, T. (2018). Towards an energy-friendly and cleaner solvent-extraction of vegetable oil. Journal of Environmental Management, 217, 196–206.

    Article  CAS  Google Scholar 

  9. Sebastian, J., Hegde, K., Kumar, P., Rouissi, T., & Brar, S. K. (2019). Bioproduction of fumaric acid: An insight into microbial strain improvement strategies. Critical Reviews in Biotechnology, 39(6), 817–834.

    Article  CAS  Google Scholar 

  10. Liu, H., Song, R., Liang, Y., Zhang, T., Deng, L., Wang, F., & Tan, T. (2018). Genetic manipulation of Escherichia coli central carbon metabolism for efficient production of fumaric acid. Bioresource Technology, 270, 96–102.

    Article  CAS  Google Scholar 

  11. Gu, S., Li, J., Chen, B., Sun, T., Liu, Q., Xiao, D., & Tian, C. (2018). Metabolic engineering of the thermophilic filamentous fungus Myceliophthora thermophila to produce fumaric acid. Biotechnology for Biofuels, 11(1), 323.

    Article  CAS  Google Scholar 

  12. Jiménez-Quero, A., Pollet, E., Zhao, M., Marchioni, E., Averous, L., & Phalip, V. (2017). Fungal fermentation of lignocellulosic biomass for itaconic and fumaric acid production. Journal of Microbiology and Biotechnology, 27(1), 1–8.

    Article  Google Scholar 

  13. Zhang, Y., Liu, H., Liu, X., Zhu, H., Fan, T., Deng, L., & Wang, F. (2020). A high efficient method for simultaneous fermentation and separation of fumaric acid with a fixed bed ion exchange column. Biochemical Engineering Journal, 160, 107610.

    Article  CAS  Google Scholar 

  14. Liu, H., Wang, W., Deng, L., Wang, F., & Tan, T. (2015). High production of fumaric acid from xylose by newly selected strain Rhizopus arrhizus RH 7-13-9#. Bioresource Technology, 186, 348–350.

    Article  CAS  Google Scholar 

  15. Kowalczyk, S., Komoń-Janczara, E., Glibowska, A., Kuzdraliński, A., Czernecki, T., & Targoński, Z. (2018). A co-utilization strategy to consume glycerol and monosaccharides by Rhizopus strains for fumaric acid production. AMB Express, 8(1), 69.

    Article  Google Scholar 

  16. Liu, H., Ma, J., Wang, M., Wang, W., Deng, L., Nie, K., Yue, X., Wang, F., & Tan, T. (2016). Food waste fermentation to fumaric acid by Rhizopus arrhizus RH7-13. Applied Biochemistry and Biotechnology, 180(8), 1524–1533.

    Article  CAS  Google Scholar 

  17. Liu, H., Yue, X., Jin, Y., Wang, M., Deng, L., Wang, F., & Tan, T. (2017). Preparation of hydrolytic liquid from dried distiller’s grains with solubles and fumaric acid fermentation by Rhizopus arrhizus RH 7-13. Journal of Environmental Management, 201, 172–176.

    Article  CAS  Google Scholar 

  18. Deng, F., & Aita, G. M. (2018). Fumaric acid production by Rhizopus oryzae ATCC® 20344 from lignocellulosic syrup. Bioenergy Research, 11(2), 330–340.

    Article  CAS  Google Scholar 

  19. Zhang, K., Yu, C., & Yang, S.-T. (2015). Effects of soybean meal hydrolysate as the nitrogen source on seed culture morphology and fumaric acid production by Rhizopus oryzae. Process Biochemistry, 50(2), 173–179.

    Article  CAS  Google Scholar 

  20. Liu, H., Zhao, S., Jin, Y., Yue, X., Deng, L., Wang, F., & Tan, T. (2017). Production of fumaric acid by immobilized Rhizopus arrhizus RH 7-13-9# on loofah fiber in a stirred-tank reactor. Bioresource Technology, 244(Pt 1), 929–933.

    Article  CAS  Google Scholar 

  21. Zhang, K., Zhang, L., & Yang, S. T. (2014). Fumaric acid recovery and purification from fermentation broth by activated carbon adsorption followed with desorption by acetone. Industrial and Engineering Chemistry Research, 53(32), 12802–12808.

    Article  CAS  Google Scholar 

Download references

Funding

This research was financially supported by the National Key Research Program (2016YFD0400601), National Natural Science Foundation of China (21978019), China Postdoctoral Science Foundation (2019M660420), Petro China Innovation Foundation (H2018415), and Amoy Industrial Biotechnology R&D and Pilot Conversion Platform (3502Z20121009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Deng.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

E-supplementary data for this work can be found in e-version of this paper online.

ESM 1

(PDF 157 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, H., Liu, H., Zhang, Y. et al. Capability Enhancement of Fumaric Acid Production by Rhizopus arrhizus Through Carbon-Nitrogen Sources Coordination. Appl Biochem Biotechnol 193, 1231–1237 (2021). https://doi.org/10.1007/s12010-020-03461-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03461-0

Keywords

Navigation