Skip to main content
Log in

Effects of cell physiological structure on the fermentation broth viscosity during poly-γ-glutamic acid production by Bacillus subtilis GXA-28

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The high viscosity of fermentation broth limited the further improvement of PGA titer. Our previous studies indicated that adding KCl to the medium could decrease the fermentation broth viscosity and improve the PGA titer. In order to clarify the reason, effects of cell physiological structure on the fermentation broth viscosity were investigated. Results from cell morphology observation showed that the reduction of cell aggregation caused by the weakened cross-linking between PGA and cells might be an important reason for the decrease in the fermentation broth viscosity. Besides, when 201.2 mM KCl was added to the medium, the zeta potential of cell surface decreased from − 70.48 ± 3.35 mV to − 81 ± 2.46 mV. The cell membrane integrity was reduced and permeability was enhanced. Furthermore, the percentage of lauric acid C12:0 in cell membrane increased by 12.36%, but palmitic acid C16:0 and stearic acid C18:0 decreased by 6.83% and 5.64%, respectively, which improved the fluidity of cell membrane. The above changes in cell membrane further affect the cross-linking between PGA and cells, thereby playing an important role in reducing the fermentation broth viscosity. This study provided some novel information for understanding the decrease of PGA fermentation broth viscosity by KCl.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Shih, I. L., & Van, Y. T. (2001). The production of poly-(γ-glutamic acid) from microorganisms and its various applications. Bioresource Technology, 79(3), 207–225.

    Article  CAS  PubMed  Google Scholar 

  2. Ogunleye, A., Bhat, A., Irorere, V. U., Hill, D., Williams, C., & Radecka, I. (2015). Poly-γ-glutamic acid: production, properties and applications. Microbiology, 161(1), 1–17.

    Article  CAS  PubMed  Google Scholar 

  3. Sirisansaneeyakul, S., Cao, M., Kongklom, N., Chuensangjun, C., Shi, Z., & Chisti, Y. (2017). Microbial production of poly-γ-glutamic acid. World Journal of Microbiology and Biotechnology, 33(9), 173.

    Article  PubMed  CAS  Google Scholar 

  4. Kubota, H., Matsunobu, T., Uotani, K., Takebe, H., Satoh, A., Tanaka, T., & Taniguchi, M. (1993). Production of poly (γ-glutamic acid) by Bacillus subtilis F-2-01. Bioscience, Biotechnology, and Biochemistry, 57(7), 1212–1213.

    Article  CAS  PubMed  Google Scholar 

  5. Qiu, Y., Sha, Y., Zhang, Y., Xu, Z., Li, S., Lei, P., Xu, Z., Feng, X., & Xu, H. (2017). Development of Jerusalem artichoke resource for efficient one-step fermentation of poly-(γ-glutamic acid) using a novel strain Bacillus amyloliquefaciens NX-2S. Bioresource Technology, 239, 197–203.

    Article  CAS  PubMed  Google Scholar 

  6. Zhang, D., Feng, X., Zhou, Z., Zhang, Y., & Xu, H. (2012). Economical production of poly(γ-glutamic acid) using untreated cane molasses and monosodium glutamate waste liquor by Bacillus subtilis NX-2. Bioresource Technology, 114, 583–588.

    Article  CAS  PubMed  Google Scholar 

  7. Zeng, W., Chen, G. G., Wu, Y. G., Dong, M. N., Zhang, B., & Liang, Z. Q. (2018). Nonsterilized fermentative production of poly-γ-glutamic acid from cassava starch and corn steep powder by a thermophilic Bacillus subtilis. Journal of Chemical Technology and Biotechnology, 93(10), 2917–2924.

    Article  CAS  Google Scholar 

  8. Regestein Nee Meissner, L., Arndt, J., Palmen, T. G., Jestel, T., Mitsunaga, H., Fukusaki, E., & Buchs, J. (2017). Investigation of poly(γ-glutamic acid) production via online determination of viscosity and oxygen transfer rate in shake flasks. Journal of Biological Engineering, 11(1), 23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Zeng, W., Liang, Z., Li, Z., Bian, Y., Li, Z., Tang, Z., & Chen, G. (2016). Regulation of poly-γ-glutamic acid production in Bacillus subtilis GXA-28 by potassium. Journal of the Taiwan Institute of Chemical Engineers, 61, 83–89.

    Article  CAS  Google Scholar 

  10. Ashiuchi, M., Kamei, T., Baek, D. H., Shin, S. Y., Sung, M. H., Soda, K., Yagi, T., & Misono, H. (2001). Isolation of Bacillus subtilis (chungkookjang), a poly-γ-glutamate producer with high genetic competence. Applied Microbiology and Biotechnology, 57(5-6), 764–769.

    Article  CAS  PubMed  Google Scholar 

  11. Wu, Q., Xu, H., Liang, J., & Yao, J. (2010). Contribution of glycerol on production of poly(γ-glutamic acid) in Bacillus subtilis NX-2. Applied Biochemistry and Biotechnology, 160(2), 386–392.

    Article  CAS  PubMed  Google Scholar 

  12. Huang, B., Qin, P., Xu, Z., Zhu, R., & Meng, Y. (2011). Effects of CaCl2 on viscosity of culture broth, and on activities of enzymes around the 2-oxoglutarate branch, in Bacillus subtilis CGMCC 2108 producing poly-(γ-glutamic acid). Bioresource Technology, 102(3), 3595–3598.

    Article  CAS  PubMed  Google Scholar 

  13. Wood, J. M. (2015). Bacterial responses to osmotic challenges. Journal of General Physiology, 145(5), 381–388.

    Article  CAS  Google Scholar 

  14. Zeng, W., Lin, Y., Qi, Z., He, Y., Wang, D., Chen, G., & Liang, Z. (2013). An integrated high-throughput strategy for rapid screening of poly(γ-glutamic acid)-producing bacteria. Applied Microbiology and Biotechnology, 97(5), 2163–2172.

    Article  CAS  PubMed  Google Scholar 

  15. Feng, J., Gao, W., Gu, Y., Zhang, W., Cao, M., Song, C., Zhang, P., Sun, M., Yang, C., & Wang, S. (2014). Functions of poly-γ-glutamic acid (γ-PGA) degradation genes in γ-PGA synthesis and cell morphology maintenance. Applied Microbiology and Biotechnology, 98(14), 6397–6407.

    Article  CAS  PubMed  Google Scholar 

  16. Ng, W. (2018). Surface charge characteristics of Bacillus subtilis NRS-762 cells. PeerJ Preprints, 6, e26626v26621.

    Google Scholar 

  17. Liu, H., Pei, H., Han, Z., Feng, G., & Li, D. (2015). The antimicrobial effects and synergistic antibacterial mechanism of the combination of ε-polylysine and nisin against Bacillus subtilis. Food Control, 47, 444–450.

    Article  CAS  Google Scholar 

  18. Aeschbacher, M., Reinhardt, C. A., & Zbinden, G. (1986). A rapid cell membrane permeability test using fluorescent dyes and flow cytometry. Cell Biology and Toxicology, 2(2), 247–255.

    Article  CAS  PubMed  Google Scholar 

  19. Sasser, M., Kunitsky, C., Jackoway, G., Ezzell, J. W., Teska, J. D., Harper, B., Parker, S., Barden, D., Blair, H., Breezee, J., Carpenter, J., Cheek, W. V., DeMartino, M., Evans, B., Ezzell, J. W., Francesconi, S., Franko, E., Gardner, W., Glazier, M., Greth, K., Harper, B., Hart, T., Hodel, M., Holmes-Talbot, K., Hopkins, K. L., Iqbal, A., Johnson, D., Krader, P., Madonna, A., McDowell, M., McKee, M. L., Park, M., Parker, S., Pentella, M., Radosevic, J., Robison, R. A., Rotzoll, B., Scott, K., Smith, M., Syed, N., Tang, J., Teska, J. D., Trinh, H., Hudson, L. I., & Wolcott, M. (2005). Identification of Bacillus anthracis from culture using gas chromatographic analysis of fatty acid methyl esters. Journal of AOAC International, 88(1), 178–181.

    Article  CAS  PubMed  Google Scholar 

  20. Zeng, W., Chen, G., Wu, H., Wang, J., Liu, Y., Guo, Y., & Liang, Z. (2016). Improvement of Bacillus subtilis for poly-gamma-glutamic acid production by genome shuffling. Microbial Biotechnology, 9(6), 824–833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ashiuchi, M. (2013). Microbial production and chemical transformation of poly-γ-glutamate. Microbial Biotechnology, 6(6), 664–674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wilson, W. W., Wade, M. M., Holman, S. C., & Champlin, F. R. (2001). Status of methods for assessing bacterial cell surface charge properties based on zeta potential measurements. Journal of Microbiological Methods, 43(3), 153–164.

    Article  CAS  PubMed  Google Scholar 

  23. Du, G., Yang, G., Qu, Y., Chen, J., & Lun, S. (2005). Effects of glycerol on the production of poly(γ-glutamic acid) by Bacillus licheniformis. Process Biochemistry, 40(6), 2143–2147.

    Article  CAS  Google Scholar 

  24. Wu, Q., Xu, H., Shi, N., Yao, J., Li, S., & Ouyang, P. (2008). Improvement of poly(γ-glutamic acid) biosynthesis and redistribution of metabolic flux with the presence of different additives in Bacillus subtilis CGMCC 0833. Applied Microbiology and Biotechnology, 79(4), 527–535.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (31760452, 21506039); the Natural Science Foundation of Guangxi Province (2018GXNSFAA294018); the Guangxi BaGui Young Scholars Program; the 2018 Guangxi One Thousand Young and Middle-Aged College and University Backbone Teachers Cultivation Program; and the Research Project of State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources (SKLCUSA-a201905).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zeng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Liu, Y., Jiang, L. et al. Effects of cell physiological structure on the fermentation broth viscosity during poly-γ-glutamic acid production by Bacillus subtilis GXA-28. Appl Biochem Biotechnol 193, 271–280 (2021). https://doi.org/10.1007/s12010-020-03418-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03418-3

Keywords

Navigation