Skip to main content

Advertisement

Log in

Carnosic Acid Content Increased by Silver Nanoparticle Treatment in Rosemary (Rosmarinus officinalis L.)

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Biosynthesis of carnosic acid (CA), one of the most industrially valuable medicinal compounds present in rosemary (Rosmarinus officinalis L.) leaves, is affected by various plant stressors. In this study, effects of silver nanoparticle (AgNP) treatment on the secondary metabolism and CA production of rosemary plants were investigated. AgNP of 0, 25, 50, 100, and 200 ppm were utilized on hydroponically grown plants using foliar spray. Efficient absorbance and translocation of AgNPs to the plant roots were confirmed by XRF (X-ray fluorescence) analysis. The fluctuations of important antioxidant compounds such as CA content, phenolics, flavonoids, and acid ascorbic were analyzed and their correlations evaluated. Results revealed that application of 200 ppm AgNPs for 12 days increased CA level more than 11%, as compared to the control plants. Furthermore, significant positive correlations were observed between total flavonoids and CA content under AgNP treatment, suggesting that AgNP acted as an elicitor and triggered the enhancement of CA accumulation effectively. These data suggest that concentration-dependent AgNP may be used to boost antioxidant activity and phytochemical contents of other medicinal plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig 3
Fig 4
Fig 5
Fig 6
Fig 7

Similar content being viewed by others

Abbreviations

AgNPs:

Silver nanoparticles

DPPH:

1, 1-diphenyl-2-picrylhydrazyl

TPTZ:

2, 4, 6-tripyridyl-s-triazine

IC50 :

Concentration of extracts that reduce 50% of DPPH radicals

AEAC:

Ascorbic acid equivalent antioxidant activity

FRAP:

Ferric reducing antioxidant power

GAE:

gallic acid equivalent

AA:

Ascorbic acid

References

  1. Luis, J. C., Martín Pérez, R., & Valdés González, F. (2007). UV-B radiation effects on foliar concentrations of rosmarinic and carnosic acids in rosemary plants. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association, 101, 1211–1215.

    Article  CAS  Google Scholar 

  2. Tounekti, T., Munné-Bosch, S., Vadel, A. M., Chtara, C., & Khemira, H. (2010). Influence of ionic interactions on essential oil and phenolic diterpene composition of Dalmatian sage (Salvia officinalis L.). Plant Physiology and Biochemistry, 48, 813–821.

    Article  CAS  Google Scholar 

  3. Tounekti, T., Vadel, A. M., Ennajeh, M., Khemira, H., & Munné-Bosch, S. (2011a). Ionic interactions and salinity affect monoterpene and phenolic diterpene composition in rosemary (Rosmarinus officinalis). Journal of Plant Nutrition and Soil Science, 174, 504–514.

    Article  CAS  Google Scholar 

  4. Tounekti, T., Hernández, I., Muller, M., Khemira, H., & Munné-Bosch, S. (2011b). Kinetin applications alleviate salt stress and improve the antioxidant composition of leaf extracts in Salvia officinalis. Plant Physiology and Biochemistry, 49, 1165–1176.

    Article  CAS  Google Scholar 

  5. Birtić, S., Dussort, P., Pierre, F.-X., Bily, A. C., & Roller, M. (2015). Carnosic acid. Phytochemistry, 115, 9–19.

    Article  Google Scholar 

  6. Giraldo, J. P., Landry, M. P., Faltermeier, S. M., McNicholas, T. P., Iverson, N. M., Boghossian, A. A., Reuel, N. F., Hilmer, A. J., Sen, F., & Brew, J. A. (2014). Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nature Materials, 13, 400.

    Article  CAS  Google Scholar 

  7. Sharma, P., Bhatt, D., Zaidi, M. G. H., Sardahi, P., Khana, P. K., & Arora, S. (2012). Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea. Applied Biochemistry and Biotechnology, 167(8), 2225–2233.

    Article  CAS  Google Scholar 

  8. Azeez, L., Lateef, A., & Adebisi, S. A. (2017). Silver nanoparticles (AgNPs) biosynthesized using pod extract of Cola nitida enhances antioxidant activity and phytochemical composition of Amaranthus caudatus Linn. Applied Nanoscience, 7, 59–66.

    Article  CAS  Google Scholar 

  9. Krishnaraj, C., Jagan, E., Ramachandran, R., Abirami, S., Mohan, N., & Kalaichelvan, P. (2012). Effect of biologically synthesized silver nanoparticles on Bacopa monnieri (Linn.) Wettst. plant growth metabolism. Process Biochemistry, 47, 651–658.

    Article  CAS  Google Scholar 

  10. Salama, H. M. (2012). Effects of silver nanoparticles in some crop plants, common bean (Phaseolus vulgaris L.) and corn (Zea mays L.). International Research Journal of Biotechnology, 3, 190–197.

    Google Scholar 

  11. Qian, H., Peng, X., Han, X., Ren, J., Sun, L., & Fu, Z. (2013). Comparison of the toxicity of silver nanoparticles and silver ions on the growth of terrestrial plant model Arabidopsis thaliana. Journal of Environmental Sciences, 25, 1947–1956.

    Article  CAS  Google Scholar 

  12. Amooaghaie, R., Saeri, M. R., & Azizi, M. (2015). Synthesis, characterization and biocompatibility of silver nanoparticles synthesized from Nigella sativa leaf extract in comparison with chemical silver nanoparticles. Ecotoxicology and Environmental Safety, 120, 400–408.

    Article  CAS  Google Scholar 

  13. Gorczyca, A., Pociecha, E., Kasprowicz, M., & Niemiec, M. (2015). Effect of nanosilver in wheat seedlings and Fusarium culmorum culture systems. European Journal of Plant Pathology, 142, 251–261.

    Article  CAS  Google Scholar 

  14. Galbraith, D. W. (2007). Nanobiotechnology: silica breaks through in plants. Nature Nanotechnology, 2, 272.

    Article  CAS  Google Scholar 

  15. Torney, F., Trewyn, B. G., Lin, V. S., & Wang, K. (2007). Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nature Nanotechnology, 2(5), 295–300.

    Article  CAS  Google Scholar 

  16. Eichert, T., Kurtz, A., Steiner, U., & Goldbach, H. E. (2008). Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water-suspended nanoparticles. Physiologia Plantarum, 134(1), 151–160.

    Article  CAS  Google Scholar 

  17. Dhoke, S. K., Mahajan, P., Kamble, R., & Khanna, A. (2013). Effect of nanoparticles suspension on the growth of mung (Vigna radiata) seedlings by foliar spray method. Nanotechnology Development, 3.

  18. Alidoust, D., & Isoda, A. (2013). Effect of γFe2O3 nanoparticles on photosynthetic characteristic of soybean (Glycine max (L.) Merr.): foliar spray versus soil amendment. Acta Physiologiae Plantarum, 35, 3365–3375.

    Article  CAS  Google Scholar 

  19. Elzey, S., & Grassian, V. H. (2010). Agglomeration, isolation and dissolution of commercially manufactured silver nanoparticles in aqueous environments. Journal of Nanoparticle Research, 12, 1945–1958.

    Article  CAS  Google Scholar 

  20. Asher, C., & Edwards, D. (1983). In Modern solution culture techniques. Inorganic plant nutrition. Springer, pp. 94–119.

  21. Marguí, E., Queralt, I., & Hidalgo, M. (2009). Application of X-ray fluorescence spectrometry to determination and quantitation of metals in vegetal material. TrAC Trends in Analytical Chemistry, 28, 362–372.

    Article  Google Scholar 

  22. Okamura, N., Fujimoto, Y., Kuwabara, S., & Yagi, A. (1994). High-performance liquid chromatographic determination of carnosic acid and carnosol in Rosmarinus officinalis L. and Salvia officinalis L. Journal of Chromatography A, 679, 381–386.

    Article  CAS  Google Scholar 

  23. Cuendet, M., Hostettmann, K., & Potterat, O. (1997). Iridoid glucosides with free radical scavenging properties from Fagraea blumei. Helvetica Chimica Acta, 80, 1144–1152.

    Article  CAS  Google Scholar 

  24. Meda, A., Lamien, C. E., Romito, M., Millogo, J., & Nacoulma, O. G. (2005). Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food Chemistry, 91, 571–577.

    Article  CAS  Google Scholar 

  25. Chang, S. S., Ostric-Matijasevic, B., Hsieh, O. A. L., & Huang, C.-L. (1977). Natural antioxidants from rosemary and sage. Journal of Food Science, 42, 1102–1106.

    Article  CAS  Google Scholar 

  26. De Pinto, M., Francis, D., & De Gara, L. (1999). The redox state of the ascorbate-dehydroascorbate pair as a specific sensor of cell division in tobacco BY-2 cells. Protoplasma, 209(1-2), 90–97.

    Article  Google Scholar 

  27. Zheng, W., & Wang, S. Y. (2001). Antioxidant activity and phenolic compounds in selected herbs. Journal of Agricultural and Food Chemistry, 49(11), 5165–5170.

    Article  CAS  Google Scholar 

  28. Chandra, S., Khan, S., Avula, B., Lata, H., Yang, M. H., ElSohly, M. A., & Khan, I. A. (2014). Assessment of total phenolic and flavonoid content, antioxidant properties, and yield of aeroponically and conventionally grown leafy vegetables and fruit crops: a comparative study. Evidence-based Complementary and Alternative Medicine, 2014, 9.

    Article  Google Scholar 

  29. Leonov, A., Arlia-Ciommo, A., Piano, A., Svistkova, V., Lutchman, V., Medkour, Y., & Titorenko, V. (2015). Longevity extension by phytochemicals. Molecules, 20(4), 6544–6572.

    Article  CAS  Google Scholar 

  30. Khodakovskaya, M. V., Kim, B.-S., Kim, J. N., Alimohammadi, M., Dervishi, E., Mustafa, T., & Cernigla, C. E. (2013). Carbon nanotubes as plant growth regulators: effects on tomato growth, reproductive system, and soil microbial community. Small, 9, 115–123.

    Article  CAS  Google Scholar 

  31. Raliya, R., Nair, R., Chavalmane, S., Wang, W.-N., & Biswas, P. (2015). Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant. Metallomics: Integrated Biometal Science, 7, 1584–1594.

    Article  CAS  Google Scholar 

  32. Vats, S. (2016). Effect of initial temperature treatment on phytochemicals and antioxidant activity of Azadirachta indica A. Juss. Applied Biochemistry and Biotechnology, 178(3), 504–512.

    Article  CAS  Google Scholar 

  33. Sharma, P., Jha, A. B., Dubey, R. S., & Pessarakli, M. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany, 2012.

  34. Kole, C., Kole, P., Randunu, K. M., Choudhary, P., Podila, R., Ke, P. C., Rao, A. M., & Marcus, R. K. (2013). Nanobiotechnology can boost crop production and quality: first evidence from increased plant biomass, fruit yield and phytomedicine content in bitter melon (Momordica charantia). BMC Biotechnology, 13, 37.

    Article  Google Scholar 

  35. Munné-Bosch, S., & Alegre, L. (2003). Drought-induced changes in the redox state of alpha-tocopherol, ascorbate, and the diterpene carnosic acid in chloroplasts of Labiatae species differing in carnosic acid contents. Plant Physiology, 131, 1816–1825.

    Article  Google Scholar 

  36. Medhe, S., Bansal, P., & Srivastava, M. M. (2014). Enhanced antioxidant activity of gold nanoparticle embedded 3,6-dihydroxyflavone: a combinational study. Applied Nanoscience, 4, 153–161.

    Article  CAS  Google Scholar 

  37. Edreva, A., Velikova, V., Tsonev, T., Dagnon, S., Gürel, A., Aktaş, L., & Gesheva, E. (2008). Stress-protective role of secondary metabolites: diversity of functions and mechanisms. General and Applied Plant Physiology, 34, 67–78.

    CAS  Google Scholar 

  38. Minibayeva, F., Kolesnikov, O., Chasov, A., Beckett, R., Lüthje, S., Vylegzhanina, N., Buck, F., & Böttger, M. (2009). Wound-induced apoplastic peroxidase activities: their roles in the production and detoxification of reactive oxygen species. Plant, Cell & Environment, 32, 497–508.

    Article  CAS  Google Scholar 

  39. Elstner, E., Wagner, G., & Schutz, W. (1988). Activated oxygen in green plants in relation to stress situations. Current topics in plant biochemistry and physiology: Proceedings of the Plant Biochemistry and Physiology Symposium held at the University of Missouri, Columbia (USA).

  40. Witzell, J., Gref, R., & Näsholm, T. (2003). Plant-part specific and temporal variation in phenolic compounds of boreal bilberry (Vaccinium myrtillus) plants. Biochemical Systematics and Ecology, 31, 115–127.

    Article  CAS  Google Scholar 

  41. Ahn, M.-R., Kumazawa, S., Usui, Y., Nakamura, J., Matsuka, M., Zhu, F., & Nakayama, T. (2007). Antioxidant activity and constituents of propolis collected in various areas of China. Food Chemistry, 101, 1383–1392.

    Article  CAS  Google Scholar 

  42. Triantaphylides, C., Krischke, M., Hoeberichts, F. A., Ksas, B., Gresser, G., Havaux, M., Van Breusegem, F., & Mueller, M. J. (2008). Singlet oxygen is the major reactive oxygen species involved in photooxidative damage to plants. Plant Physiology, 148(2), 960–968.

    Article  CAS  Google Scholar 

  43. Barbasz, A., Ocwieja, M., & Barbasz, J. (2015). Cytotoxic activity of highly purified silver nanoparticles sol against cells of human immune system. Applied Biochemistry and Biotechnology, 176(3), 817–834.

    Article  CAS  Google Scholar 

  44. Benzie, I., & Strain, J. (1999). Ferric reducing (antioxidant) power as a measure of antioxidant capacity: the FRAP assay. Methods in Enzymology, 299, 15–27.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Prof. M. Shahbazi, the CEO of AryaTinaGene (ATG) Biopharmaceutical Company, Iran, for providing access to HPLC facilities; to Dr. A. Dehno Khalaji, Golestan University, for providing AgNPs; to M. R. Azarakhsh, for helping in drawing the graphs; and G. Bagheriehnajar for carefully reading the manuscript and improving the English. This research was supported by Golestan University in the form of a grant (41.5745) awarded to MHS and MBBN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad B. Bagherieh-Najjar.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hadi Soltanabad, M., Bagherieh-Najjar, M.B. & Mianabadi, M. Carnosic Acid Content Increased by Silver Nanoparticle Treatment in Rosemary (Rosmarinus officinalis L.). Appl Biochem Biotechnol 191, 482–495 (2020). https://doi.org/10.1007/s12010-019-03193-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-03193-w

Keywords

Navigation