Skip to main content
Log in

Effects of 2-(2-Chlorophenyl)ethylbiguanide on ERAD Component Expression in HT-29 Cells Under a Serum- and Glucose-Deprived Condition

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

We recently characterized the cytotoxic action of a novel phenformin derivative, 2-(2-chlorophenyl)ethylbiguanide (2-Cl-Phen), on HT-29 cells under a serum- and glucose-deprived condition and found that 2-Cl-Phen attenuated ATF4 and GRP78, typical downstream targets of the unfolded protein response (UPR), together with c-Myc protein expression in a transcriptional and posttranscriptional manner. In the current study, we focused on the expression of ER-associated protein degradation (ERAD) components after treatment with 2-Cl-Phen under a serum- and glucose-deprived condition. Among nine ER-localizing factors regulating protein quality control within the ER, the amounts of Herp, GRP78, GRP94, and OS9 proteins were significantly downregulated by treatment with 2-Cl-Phen. In particular, replacement of the culture medium with the serum- and glucose-deprived medium induced the expression of Herp protein at the early phase. This increase in Herp protein was accompanied by an increase in its mRNA, and its induction was significantly dampened by 2-Cl-Phen. However, cotreatment with a proteasome inhibitor, MG132, restored Herp expression only to a limited extent. Taken together, these results show that 2-Cl-Phen changed the expression of several ERAD components, especially by transcriptional inhibition of Herp induction by 2-Cl-Phen when it occurred at an early phase, and this finding provides new insights into understanding the mechanisms of 2-Cl-Phen-mediated cytotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ATF4:

Activating transcription factor 4

ATF6:

Activating transcription factor 6

2-Cl-Phen:

2-(2-Chlorophenyl)ethylbiguanide

CHX:

Cycloheximide

Derlin-1:

Degradation in endoplasmic reticulum protein 1

ER:

Endoplasmic reticulum

ERAD:

ER stress-associated protein degradation

GRP78:

78 kDa glucose-regulated protein

GRP94:

94 kDa glucose-regulated protein

G3PDH:

Glyceraldehyde 3-phosphate dehydrogenase

Herp:

Homocysteine-induced ER protein

Hrd1:

Hydroxymethylglutaryl reductase degradation 1

OS9:

Osteosarcoma amplified 9

PERK:

PKR-like endoplasmic reticulum kinase

PDI:

Protein disulfide isomerase

RT-PCR:

Reverse transcription polymerase chain reaction

SEL1L:

Suppressor/enhancer of lin-12-like

VCP:

Valosin-containing protein

References

  1. Helenius, A., Marquardt, T., & Braakman, I. (1992). The endoplasmic reticulum as protein-folding compartment. Trends in Cell Biology, 2(8), 227–231.

    Article  CAS  PubMed  Google Scholar 

  2. Zhu, C., Johansen, F. E., & Prywes, R. (1997). Interaction of ATF6 and serum response factor. Molecular and Cellular Biology, 17(9), 4957–4966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Calfon, M., Zeng, H., Urano, F., Till, J. H., Hubbard, S. R., Harding, H. P., Clark, S. G., & Ron, D. (2002). IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature, 415(6867), 92–96.

    Article  CAS  Google Scholar 

  4. Harding, H. P., Zhang, Y., & Ron, D. (1999). Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature, 397(6716), 271–274.

    Article  CAS  PubMed  Google Scholar 

  5. Kim, I., Xu, W., & Reed, J. C. (2008). Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nature Reviews Drug Discovery, 7(12), 1013–1030.

    Article  CAS  PubMed  Google Scholar 

  6. Cao, S. S., & Kaufman, R. J. (2014). Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease. Antioxidants & Redox Signaling, 21(3), 396–413.

    Article  CAS  Google Scholar 

  7. Yoshida, H., Matsui, T., Yamamoto, A., Okada, T., & Mori, K. (2001). XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell, 107(7), 881–891.

    Article  CAS  Google Scholar 

  8. Lee, A. H., Iwakoshi, N. N., & Glimcher, L. H. (2003). XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Molecular and Cellular Biology, 23(21), 7448–7459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Okada, T., Yoshida, H., Akazawa, R., Negishi, M., & Mori, K. (2002). Distinct roles of activating transcription factor 6 (ATF6) and double-stranded RNA-activated protein kinase-like endoplasmic reticulum kinase (PERK) in transcription during the mammalian unfolded protein response. The Biochemical Journal, 366(2), 585–594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144(5), 646–674.

    Article  CAS  PubMed  Google Scholar 

  11. Fu, Y., & Lee, A. S. (2006). Glucose regulated proteins in cancer progression, drug resistance and immunotherapy. Cancer Biology & Therapy, 5(7), 741–744.

    Article  CAS  Google Scholar 

  12. Bi, M., Naczki, C., Koritzinsky, M., Fels, D., Blais, J., Hu, N., Harding, H., Novoa, I., Varia, M., Raleigh, J., Scheuner, D., Kaufman, R. J., Bell, J., Ron, D., Wouters, B. G., & Koumenis, C. (2005). ER stress-regulated translation increases tolerance to extreme hypoxia and promotes tumor growth. The EMBO Journal, 24(19), 3470–3481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pyrko, P., Schonthal, A. H., Hofman, F. M., Chen, T. C., & Lee, A. S. (2007). The unfolded protein response regulator GRP78/BiP as a novel target for increasing chemosensitivity in malignant gliomas. Cancer Research, 67(20), 9809–9816.

    Article  CAS  PubMed  Google Scholar 

  14. Narise, K., Okuda, K., Enomoto, Y., Hirayama, T., & Nagasawa, H. (2014). Optimization of biguanide derivatives as selective antitumor agents blocking adaptive stress responses in the tumor microenvironment. Drug Design, Development and Therapy, 8, 701–717.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Oh-hashi K, Irie N, Sakai T, Okuda K, Nagasawa H, Hirata Y. Kiuchi K. (2016) Elucidation of a novel phenformin derivative on glucose-deprived stress responses in HT-29 cells. Molecular and Cellular Biochemistry, 419(1-2), 29–40.

  16. Oh-hashi, K., Matsumoto, S., Sakai, T., Nomura, Y., Okuda, K., Nagasawa, H., & Hirata, Y. (2018). Elucidating the rapid action of 2-(2-chlorophenyl) ethylbiguanide on HT-29 cells under a serum- and glucose-deprived condition. Cell Biology and Toxicology, 34(4), 279–290.

    Article  PubMed  Google Scholar 

  17. Hoseki, J., Ushioda, R., & Nagata, K. (2010). Mechanism and components of endoplasmic reticulum associated degradation. Journal of Biochemistry, 147(1), 19–25.

    Article  CAS  PubMed  Google Scholar 

  18. Wang, Q., Mora-Jensen, H., Weniger, M. A., Perez-Galan, P., Wolford, C., Hai, T., Ron, D., Chen, W., Trenkle, W., Wiestner, A., & Ye, Y. (2009). ERAD inhibitors integrate ER stress with an epigenetic mechanism to activate BH3-only protein NOXA in cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 106(7), 2200–2205.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Chou, T. F., Li, K., Frankowski, K. J., Schoenen, F. J., & Deshaies, R. J. (2013). Structure-activity relationship study reveals ML240 and ML241 as potent and selective inhibitors of p97 ATPase. ChemMedChem, 8(2), 297–312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Norisada, J., Hirata, Y., Amaya, F., Kiuchi, K., & Oh-hashi, K. (2016). A comparative analysis of the molecular features of MANF and CDNF. PLoS One, 11(1), e0146923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kokame, K., Agarwala, K. L., Kato, H., & Miyata, T. (2000). Herp, a new ubiquitin-like membrane protein induced by endoplasmic reticulum stress. The Journal of Biological Chemistry, 275(42), 32846–32853.

    Article  CAS  PubMed  Google Scholar 

  22. Ma, Y., & Hendershot, L. M. (2004). Herp is dually regulated by both the endoplasmic reticulum stress-specific branch of the unfolded protein response and a branch that is shared with other cellular stress pathways. The Journal of Biological Chemistry, 279(14), 13792–13799.

    Article  CAS  PubMed  Google Scholar 

  23. Chan, S. L., Fu, W., Zhang, P., Cheng, A., Lee, J., Kokame, K., & Mattson, M. P. (2004). Herp stabilizes neuronal Ca2+ homeostasis and mitochondrial function during endoplasmic reticulum stress. The Journal of Biological Chemistry, 279(27), 28733–28743.

    Article  CAS  PubMed  Google Scholar 

  24. Kaneko, M., Yasui, S., Niinuma, Y., Arai, K., Omura, T., Okuma, Y., & Nomura, Y. (2007). A different pathway in the endoplasmic reticulum stress-induced expression of human HRD1 and SEL1 genes. FEBS Letters, 581(28), 5355–5360.

    Article  CAS  PubMed  Google Scholar 

  25. Iida, Y., Fujimori, T., Okawa, K., Nagata, K., Wada, I., & Hosokawa, N. (2011). SEL1L protein critically determines the stability of the HRD1-SEL1L endoplasmic reticulum-associated degradation (ERAD) complex to optimize the degradation kinetics of ERAD substrates. The Journal of Biological Chemistry, 286(19), 16929–16939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bernasconi, R., Pertel, T., Luban, J., & Molinari, M. (2008). A dual task for the Xbp1-responsive OS-9 variants in the mammalian endoplasmic reticulum: Inhibiting secretion of misfolded protein conformers and enhancing their disposal. The Journal of Biological Chemistry, 283(24), 16446–16454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shen, J., Chen, X., Hendershot, L., & Prywes, R. (2002). ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals. Developmental Cell, 3(1), 99–111.

    Article  CAS  PubMed  Google Scholar 

  28. Sou, S. N., Ilieva, K. M., & Polizzi, K. M. (2012). Binding of human BiP to the ER stress transducers IRE1 and PERK requires ATP. Biochemical and Biophysical Research Communications, 420(2), 473–478.

    Article  CAS  PubMed  Google Scholar 

  29. Christianson, J. C., Shaler, T. A., Tyler, R. E., & Kopito, R. R. (2008). OS-9 and GRP94 deliver mutant alpha1-antitrypsin to the Hrd1-SEL1L ubiquitin ligase complex for ERAD. Nature Cell Biology, 10(3), 272–282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nakamura, N., Rabouille, C., Watson, R., Nilsson, T., Hui, N., Slusarewicz, P., Kreis, T. E., & Warren, G. (1995). Characterization of a cis-Golgi matrix protein, GM130. The Journal of Cell Biology, 131(6), 1715–1726.

    Article  CAS  PubMed  Google Scholar 

  31. Reiling JH, Olive AJ, Sanyal S, Carette JE, Brummelkamp TR, Ploegh HL, Starnbach MN, Sabatini,DM. (2013) A CREB3-ARF4 signalling pathway mediates the response to Golgi stress and susceptibility to pathogens. Nature Cell Biology 15(12), 1473–1485.

  32. Taniguchi, M., & Yoshida, H. (2017). TFE3, HSP47, and CREB3 pathways of the mammalian Golgi stress response. Cell Structure and Function, 42(1), 27–36.

    Article  CAS  PubMed  Google Scholar 

  33. Oh-hashi, K., Soga, A., Naruse, Y., Takahashi, K., Kiuchi, K., & Hirata, Y. (2018). Elucidating post-translational regulation of mouse CREB3 in Neuro2a cells. Molecular and Cellular Biochemistry, 448(1-2), 287–297.

    Article  CAS  PubMed  Google Scholar 

  34. Yamamoto, K., Suzuki, N., Wada, T., Okada, T., Yoshida, H., Kaufman, R. J., & Mori, K. (2008). Human HRD1 promoter carries a functional unfolded protein response element to which XBP1 but not ATF6 directly binds. Journal of Biochemistry, 144(4), 477–486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sai, X., Kokame, K., Shiraishi, H., Kawamura, Y., Miyata, T., Yanagisawa, K., & Komano, H. (2003). The ubiquitin-like domain of Herp is involved in Herp degradation, but not necessary for its enhancement of amyloid beta-protein generation. FEBS Letters, 553(1-2), 151–156.

    Article  CAS  PubMed  Google Scholar 

  36. Tanaka, T., Tsujimura, T., Takeda, K., Sugihara, A., Maekawa, A., Terada, N., Yoshida, N., & Akira, S. (1998). Targeted disruption of ATF4 discloses its essential role in the formation of eye lens fibres. Genes to Cells, 3(12), 801–810.

    Article  CAS  PubMed  Google Scholar 

  37. Masuoka, H. C., & Townes, T. M. (2002). Targeted disruption of the activating transcription factor 4 gene results in severe fetal anemia in mice. Blood, 99(3), 736–745.

    Article  CAS  PubMed  Google Scholar 

  38. Pasini, S., Corona, C., Liu, J., Greene, L. A., & Shelanski, M. L. (2015). Specific downregulation of hippocampal ATF4 reveals a necessary role in synaptic plasticity and memory. Cell Reports, 11(2), 183–191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Miura, H., Hashida, K., Sudo, H., Awa, Y., Takarada-Iemata, M., Kokame, K., Takahashi, T., Matsumoto, M., Kitao, Y., & Hori, O. (2010). Deletion of Herp facilitates degradation of cytosolic proteins. Genes to Cells, 15(8), 843–853.

    CAS  PubMed  Google Scholar 

  40. Eura, Y., Yanamoto, H., Arai, Y., Okuda, T., Miyata, T., & Kokame, K. (2012). Derlin-1 deficiency is embryonic lethal, Derlin-3 deficiency appears normal, and Herp deficiency is intolerant to glucose load and ischemia in mice. PLoS One, 7(3), e34298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sun S, Shi G, Han X, Francisco AB, Ji Y, Mendonça N, Liu X, Locasale JW, Simpson KW, Duhamel GE, Kersten S, Yates JR 3rd, Long Q, Qi L. (2014) Sel1L is indispensable for mammalian endoplasmic reticulum-associated degradation, endoplasmic reticulum homeostasis, and survival. Proceedings of the National Academy of Sciences of the United States of America 111(5), E582–E591

  42. Oyadomari, S., & Mori, M. (2004). Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death and Differentiation, 11(4), 381–389.

    Article  CAS  PubMed  Google Scholar 

  43. Lee, C. Y., Lee, M. G., Choi, K. C., Kang, H. M., & Chang, Y. S. (2012). Clinical significance of GADD153 expression in stage I non-small cell lung cancer. Oncology Letters, 4(3), 408–412.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Thevenot, P. T., Sierra, R. A., Raber, P. L., Al-Khami, A. A., Trillo-Tinoco, J., Zarreii, P., Ochoa, A. C., Cui, Y., Del Valle, L., & Rodriguez, P. C. (2014). The stress-response sensor chop regulates the function and accumulation of myeloid-derived suppressor cells in tumors. Immunity, 41(3), 389–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Liu, Z., Zhang, Q., Peng, H., & Zhang, W. Z. (2012). Animal lectins: potential antitumor therapeutic targets in apoptosis. Applied Biochemistry and Biotechnology, 168(3), 629–637.

    Article  CAS  PubMed  Google Scholar 

  46. Song, W., Yang, H. B., Chen, P., Wang, S. M., Zhao, L. P., Xu, W. H., Fan, H. F., Gu, X., & Chen, L. Y. (2013). Apoptosis of human gastric carcinoma SGC-7901 induced by deoxycholic acid via the mitochondrial-dependent pathway. Applied Biochemistry and Biotechnology, 171(4), 1061–1071.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work is partly supported by the Koshiyama Science and Technology Foundation (to Kensuke Okuda), Grant-in-Aid for Challenging Exploratory Research (no. 17K19901 to Kentaro Oh-hashi), and the OGAWA Science and Technology Foundation (to Kentaro Oh-hashi).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kentaro Oh-hashi.

Ethics declarations

Competing Interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Fig. 1

Effect of tunicamycin on OS9 protein expression in HT-29 cells. HT-29 cells were incubated in serum-containing medium together with or without tunicamycin (Tm, 1 μg/ml) or serum- and glucose-deprived medium for 24 h. The expression levels of the indicated protein were determined as described in the “Materials and methods” section. (PPTX 54.4 kb)

Supplementary Fig. 2

Effect of MG132 and cycloheximide on ATF4 protein expression in HT-29 cells under a serum- and glucose-deprived condition. HT-29 cells were incubated in the serum-containing or serum- and glucose-deprived medium together with 2-Cl-Phen (50 μM), cycloheximide (CHX, 10 μg/ml), MG132 (MG, 10 μM), or vehicle for 12 h. The expression levels of the indicated protein were determined as described in the “Materials and methods” section. Representative results are shown in this figure. (PPTX 180 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh-hashi, K., Matsumoto, S., Sakai, T. et al. Effects of 2-(2-Chlorophenyl)ethylbiguanide on ERAD Component Expression in HT-29 Cells Under a Serum- and Glucose-Deprived Condition. Appl Biochem Biotechnol 188, 1009–1021 (2019). https://doi.org/10.1007/s12010-019-02969-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-02969-4

Keywords

Navigation