Skip to main content
Log in

Prediction of Lignin Contents from Infrared Spectroscopy: Chemical Digestion and Lignin/Biomass Ratios of Cryptomeria japonica

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A method for the high-throughput analysis of the relative lignin contents of Cryptomeria japonica samples over a wide concentration range (3–73%), independent of the type of chemical pretreatment, was developed by using Fourier transform infrared spectroscopy. First, the assignments of the infrared absorbance related to lignin were reviewed. Then, various chemical treatments, including alkaline, acid, and hydrothermal processes, and a sodium chlorite oxidation treatment, were performed to prepare samples containing a wide range of different lignin contents. Principal component analysis indicated high variability among the chemical treatments in terms of the corresponding lignin contents as well as the resulting changes in the chemical structure of hemicellulose; this conclusion was supported by the loading vectors. The intensity of the key band of lignin at 1508 cm−1 was calculated using the absorbance at 2900 cm−1 as a reference; a reliable calibration curve with an R2 of 0.968 was obtained independent of the chemical treatment performed. This simple and rapid method for determining the lignin content is expected to be widely applicable for optimizing bioethanol production, as well as monitoring biomass degradation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sarkar, P., Bosneaga, E., & Auer, M. (2009). Plant cell walls throughout evolution: towards a molecular understanding of their design principles. Journal of Experimental Botany, 60(13), 3615–3635.

    Article  CAS  PubMed  Google Scholar 

  2. Kolboe, S., & Ellefsen, O. (1962). Infrared of investigations of lignin. Tappi 45(2), 163–166.

  3. Marton, J., & Sparks, H. (1967). Determination of lignin in pulp and paper by infrared multiple internal reflectance. Tappi, 50(7), 363–368.

  4. Schultz, T., & Burns, D. (1990). Rapid secondary analysis of lignocellulose: comparison of near infrared (NIR) and Fourier transform infrared (FTIR). Tappi Journal, 73, 209–212.

  5. Rodrigues, J., Faix, O., & Pereira, H. (1998). Determination of lignin content of Eucalyptus globulus wood using FTIR spectroscopy. Holzforschung, 52(1), 46–50.

    Article  CAS  Google Scholar 

  6. Tucker, M. P., Nguyen, Q. A., Eddy, F. P., Kadam, K. L., Gedvilas, L. M., & Webb, J. D. (2001). Fourier transform infrared quantitative analysis of sugars and lignin in pretreated softwood solid residues. Applied Biochemistry and Biotechnology, 91, 51–61.

  7. Wise, L., Murphy, M., & D'Addieco, A. (1946). Chlorite holocellulose, its fractionation and bearing on summative wood analysis and studies on the hemicelluloses. Paper Trade Journal, 122(2), 35–43.

  8. Horikawa, Y. (2017). Assessment of cellulose structural variety from different origins using near infrared spectroscopy. Cellulose, 24(12), 5313–5325.

    Article  CAS  Google Scholar 

  9. Grabber, J. H., Hatfield, R. D., & Ralph, J. (2003). Apoplastic pH and monolignol addition rate effects on lignin formation and cell wall degradability in maize. Journal of Agricultural and Food Chemistry, 51(17), 4984–4989.

    Article  CAS  PubMed  Google Scholar 

  10. Rabemanolontsoa, H., & Saka, S. (2013). Comparative study on chemical composition of various biomass species. RSC Advances, 3(12), 3946–3956.

    Article  CAS  Google Scholar 

  11. Åkerholm, M., & Salmén, L. (2001). Interactions between wood polymers studied by dynamic FT-IR spectroscopy. Polymer, 42(3), 963–969.

    Article  Google Scholar 

  12. Bolker, H. I., & Somervil, N. G. (1963). Infrared spectroscopy of lignins. Pulp and Paper Magazine of Canada, 64, T187–193.

  13. Faix, O. (1991). Condensation indices of lignins determined by FTIR-spectroscopy. Holz als Roh- und Werkstoff, 49(9), 356–356.

    Article  Google Scholar 

  14. Fengel, D. (1991). Chemical studies on the wood of Quebracho colorado (Schinopsis balansae Engl.). Part 2. Investigations of the lignin. Holzforschung, 45(6), 395–401.

  15. Harrington, K. J., Higgins, H. G., & Michell, A. J. (1964). Infrared spectra of Eucalyptus regnans F. Muell. and Pinus radiata D. Don. Holzforschung, 18(4), 108–113.

    Article  CAS  Google Scholar 

  16. Hergert, H. L. (1960). Infrared spectra of lignin and related compounds. II. Conifer lignin and model compounds. The Journal of Organic Chemistry, 25(3), 405–413.

    Article  CAS  Google Scholar 

  17. Higgins, H. G., Stewart, C. M., & Harrington, K. J. (1961). Infrared spectra of cellulose and related polysaccharides. Journal of Polymer Science, 51(155), 59–84.

    Article  CAS  Google Scholar 

  18. Horikawa, Y., Itoh, T., & Sugiyama, J. (2006). Preferential uniplanar orientation of cellulose microfibrils reinvestigated by the FTIR technique. Cellulose, 13(3), 309–316.

    Article  CAS  Google Scholar 

  19. Liang, C. Y., & Marchessault, R. H. (1960). Infrared spectra of crystalline polysaccharides. IV. The use of inclined incidence in the study of oriented films. Journal of Polymer Science, 43(141), 85–100.

    Article  CAS  Google Scholar 

  20. Marchessault, R. H., (1962). Application of infra-red spectroscopy to cellulose and wood polysaccharides. Pure and Applied Chemistry, 5, 107–130.

  21. Marchessault, R. H., & Liang, C. Y. (1962). The infrared spectra of crystalline polysaccharides. VIII. Xylans. Journal of Polymer Science, 59(168), 357–378.

    Article  CAS  Google Scholar 

  22. Maréchal, Y., & Chanzy, H. (2000). The hydrogen bond network in I β cellulose as observed by infrared spectrometry. Journal of Molecular Structure, 523(1-3), 183–196.

    Article  Google Scholar 

  23. Pandey, K. K., & Pitman, A. J. (2004). Examination of the lignin content in a softwood and a hardwood decayed by a brown-rot fungus with the acetyl bromide method and Fourier transform infrared spectroscopy. Journal of Polymer Science, Polymer Chemistry, 42(10), 2340–2346.

    Article  CAS  Google Scholar 

  24. Yahya, R., Yansen, Y., Sundaryono, A., Horikawa, Y., & Sugiyama, J. (2017). Neighbourhood of vessels: chemical composition and microfibril angle of fibre within Acacia mangium. Journal of Tropical Forest Science, 29(3), 267–274.

  25. Shimizu, S., Yokoyama, T., & Matsumoto, Y. (2015). Effect of type of aromatic nucleus in lignin on the rate of the β-O-4 bond cleavage during alkaline pulping process. Journal of Wood Science, 61(5), 529–536.

    Article  CAS  Google Scholar 

  26. Kim, J. S., Awano, T., Yoshinaga, A., & Takabe, K. (2010). Temporal and spatial immunolocalization of glucomannans in differentiating earlywood tracheid cell walls of Cryptomeria japonica. Planta, 232(2), 545–554.

  27. Mann, D. G. J., Labbe, N., Sykes, R. W., Gracom, K., Kline, L., Swamidoss, I. M., Burris, J. N., Davis, M., & Stewart, C. N. (2009). Rapid assessment of lignin content and structure in switchgrass (Panicum virgatum L.) grown under different environmental conditions. Bioenergy Research, 2(4), 246–256.

  28. Negro, M. J., Manzanares, P., Ballesteros, I., Oliva, J. M., Cabanas, A., & Ballesteros, M. (2003). Hydrothermal pretreatment conditions to enhance ethanol production from poplar biomass. Applied Biochemistry and Biotechnology, 105(1-3), 87–100.

    Article  PubMed  Google Scholar 

  29. Phaiboonsilpa, N., Yamauchi, K., Lu, X., & Saka, S. (2010). Two-step hydrolysis of Japanese cedar as treated by semi-flow hot-compressed water. Journal of Wood Science, 56(4), 331–338.

    Article  CAS  Google Scholar 

  30. Wada, M. (2002). Lateral thermal expansion of cellulose Iβ and III polymorphs. Journal of Polymer Science: Polymer Physics, 40(11), 1095–1102.

    Article  CAS  Google Scholar 

  31. Horikawa, Y., Imai, T., Takada, R., Watanabe, T., Takabe, K., Kobayashi, Y., & Sugiyama, J. (2011). Near-infrared chemometric approach to exhaustive analysis of rice straw pretreated for bioethanol conversion. Applied Biochemistry and Biotechnology, 164(2), 194–203.

    Article  CAS  PubMed  Google Scholar 

  32. Horikawa, Y., Imai, T., Takada, R., Watanabe, T., Takabe, K., Kobayashi, Y., & Sugiyama, J. (2012). Chemometric analysis with near-infrared spectroscopy for chemically pretreated Erianthus toward efficient bioethanol production. Applied Biochemistry and Biotechnology, 166(3), 711–721.

  33. Assis, C., Ramos, R. S., Silva, L. A., Kist, V., Barbosa, M. H. P., & Teófilo, R. F. (2017). Prediction of lignin content in different parts of sugarcane using near-infrared spectroscopy (NIR), ordered predictors selection (OPS), and partial least squares (PLS). Applied Spectroscopy, 71(8), 2001–2012.

    Article  CAS  PubMed  Google Scholar 

  34. Fahey, L. M., Nieuwoudt, M. K., & Harris, P. J. (2018). Using near infrared spectroscopy to predict the lignin content and monosaccharide compositions of Pinus radiata wood cell walls. International Journal of Biological Macromolecules, 113, 507–514.

    Article  CAS  PubMed  Google Scholar 

  35. Fahey, L. M., Nieuwoudt, M. K., & Harris, P. J. (2017). Predicting the cell-wall compositions of Pinus radiata (radiata pine) wood using ATR and transmission FTIR spectroscopies. Cellulose, 24(12), 5275–5293.

  36. McLean, J. P., Jin, G., Brennan, M., Nieuwoudt, M. K., & Harris, P. J. (2014). Using NIR and ATR-FTIR spectroscopy to rapidly detect compression wood in Pinus radiata. Canadian Journal of Forest Research, 44(7), 820–830.

Download references

Funding

This research study was jointly supported by Grants-in-Aid for Scientific Research (KAKENHI) (Grant Nos. 17K19283 and 17H03840) from the Japan Society for the Promotion of Science (JSPS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiki Horikawa.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horikawa, Y., Hirano, S., Mihashi, A. et al. Prediction of Lignin Contents from Infrared Spectroscopy: Chemical Digestion and Lignin/Biomass Ratios of Cryptomeria japonica. Appl Biochem Biotechnol 188, 1066–1076 (2019). https://doi.org/10.1007/s12010-019-02965-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-02965-8

Keywords

Navigation