Skip to main content
Log in

Integrated Functional-Omics Analysis of Thermomyces lanuginosus Reveals its Potential for Simultaneous Production of Xylanase and Substituted Xylooligosaccharides

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Thermophiles have several beneficial properties for the conversion of biomass at high temperatures. Thermomyces lanuginosus is a thermophilic filamentous fungus that was shown to secrete 40 glycoside hydrolases and 25 proteases when grown on different carbon sources. Among the 13 identified glycoside hydrolases with high expression levels, 9 were reduced sugar glycosidases (RSGs) belonging to seven GH families, and 7 of the 10 identified proteases were exopeptidases belonging to six different protease families. High expression of RSGs and exopeptidases may allow the fungus to efficiently degrade oligosaccharides and oligopeptides in saprophytic habitats. There were no xylan side chain-degrading enzymes predicted in the genome of T. lanuginosus, and only one thermophilic GH11 xylanase (g4601.t1) and one GH43 xylosidase (g3706.t1) were detected by liquid chromatography-mass spectrometry/mass spectrometry when T. lanuginosus grown on xylan, which led to the accumulation of substituted xylooligosaccharides (SXOS) during corncob xylan degradation where SXOS output made up more than 8% of the total xylan. The SXOS are beneficial prebiotics and important inducers for enzymes secretion of microorganisms. Thus, T. lanuginosus exhibits distinct advantages in utilizing cheap raw materials producing one thermostable xylanase and the high value-added SXOS as well as microbial inoculants to compost by batch fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cooney, D. G., & Emerson, R. (1964). Thermophilic fungi. An account of their biology, activities, and classification. New York: W.H. Freeman and Co.

    Google Scholar 

  2. Li, F. L. (2015). Thermophilic microorganisms. Norfolk: Caister Academic Press.

    Google Scholar 

  3. Frock, A. D., & Kelly, R. M. (2012). Extreme thermophiles: moving beyond single-enzyme biocatalysis. Current Opinion in Chemical Engineering, 1(4), 363–372.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Olson, D. G., McBride, J. E., Shaw, A. J., & Lynd, L. R. (2012). Recent progress in consolidated bioprocessing. Current Opinion in Biotechnology, 23(3), 396–405.

    Article  CAS  PubMed  Google Scholar 

  5. Shukla, P. (2016). Microbial Biotechnology: an interdisciplinary approach. Boca Raton London New York: CRC Press.

    Book  Google Scholar 

  6. Anbar, M., Gul, O., Lamed, R., Sezerman, U. O., & Bayer, E. A. (2012). Improved thermostability of Clostridium thermocellum endoglucanase Cel8A by using consensus-guided mutagenesis. Applied and Environmental Microbiology, 78(9), 3458–3464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Xia, Y., Fang, H. H. P., & Zhang, T. (2013). Recent studies on thermophilic anaerobic bioconversion of lignocellulosic biomass. RSC Advances, 3(36), 15528–15542.

    Article  CAS  Google Scholar 

  8. Maheshwari, R., Bharadwaj, G., & Bhat, M. K. (2000). Thermophilic fungi: their physiology and enzymes. Microbiology and Molecular Biology Reviews, 64(3), 461–488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Manimaran, A., Kumar, K. S., Permaul, K., & Singh, S. (2009). Hyper production of cellulase-free xylanase by Thermomyces lanuginosus SSBP on bagasse pulp and its application in biobleaching. Applied Microbiology and Biotechnology, 81(5), 887–893.

    Article  CAS  PubMed  Google Scholar 

  10. Purkarthofer, H., Sinner, M., & Steiner, W. (1993). Cellulase-free xylanase from Thermomyces lanuginosus: optimization of production in submerged and solid-state culture. Enzyme and Microbial Technology, 15(8), 677–682.

    Article  CAS  Google Scholar 

  11. Winger, A. M., Heazlewood, J. L., Chan, L. J., Petzold, C. J., Permaul, K., & Singh, S. (2014). Secretome analysis of the thermophilic xylanase hyper-producer Thermomyces lanuginosus SSBP cultivated on corn cobs. Journal of Industrial Microbiology & Biotechnology, 41(11), 1687–1696.

    Article  CAS  Google Scholar 

  12. Zhang, L., Ma, H., Zhang, H., Xun, L., Chen, G., & Wang, L. (2015). Thermomyces lanuginosus is the dominant fungus in maize straw composts. Bioresource Technology, 197, 266–275.

    Article  CAS  PubMed  Google Scholar 

  13. Viikari, L., Kantelinen, A., Sundquist, J., & Linko, M. (1994). Xylanases in bleaching: from an idea to the industry. FEMS Microbiology Reviews, 13(2-3), 335–350.

    Article  CAS  Google Scholar 

  14. Beg, Q., Kapoor, M., Mahajan, L., & Hoondal, G. (2001). Microbial xylanases and their industrial applications: a review. Applied Microbiology and Biotechnology, 56(3-4), 326–338.

    Article  CAS  PubMed  Google Scholar 

  15. Subramaniyan, S., & Prema, P. (2002). Biotechnology of microbial xylanases: enzymology, molecular biology, and application. Critical Reviews in Biotechnology, 22(1), 33–64.

    Article  CAS  PubMed  Google Scholar 

  16. Chutani, P., & Sharma, K. K. (2015). Biochemical evaluation of xylanases from various filamentous fungi and their application for the deinking of ozone treated newspaper pulp. Carbohydrate Polymers, 127, 54–63.

    Article  CAS  PubMed  Google Scholar 

  17. Fernandez-Lafuente, R. (2010). Lipase from Thermomyces lanuginosus: uses and prospects as an industrial biocatalyst. Journal of Molecular Catalysis B: Enzymatic, 62(3-4), 197–212.

    Article  CAS  Google Scholar 

  18. Khan, F. I., Govender, A., Permaul, K., Singh, S., & Bisetty, K. (2015). Thermostable chitinase II from Thermomyces lanuginosus SSBP: Cloning, structure prediction and molecular dynamics simulations. Journal of Theoretical Biology, 374, 107–114.

    Article  CAS  PubMed  Google Scholar 

  19. Shrivastava, S., Shukla, P., Deepalakshmi, P. D., & Mukhopadhyay, K. (2013). Characterization, cloning and functional expression of novel xylanase from Thermomyces lanuginosus SS-8 isolated from self-heating plant wreckage material. World Journal of Microbiology and Biotechnology, 29(12), 2407–2415.

    Article  CAS  PubMed  Google Scholar 

  20. Zheng, Y. Y., Guo, X. H., Song, N. N., & Li, D. C. (2011). Thermophilic lipase from Thermomyces lanuginosus: gene cloning, expression and characterization. Journal of Molecular Catalysis B: Enzymatic, 69(3-4), 127–132.

    Article  CAS  Google Scholar 

  21. Xu, R., Zhang, Y., Xie, C., Zhang, C., & Li, D. (2010). Cloning of glucoamylase gene (gla) from Thermomyces lanuginosus and its expression in Pichia pastoris. Journal of Agricultural Biotechnology, 18, 362–367.

    Google Scholar 

  22. Palanivelu, P., & Lakshmi, V. (2013). Molecular cloning and characterization of a chitinase gene from the thermophilic fungus, Thermomyces lanuginosus-RMB. IOSR Journal of Pharmacy and Biological Sciences, 5(2), 99–107.

    Article  Google Scholar 

  23. Gramany, V., Khan, F. I., Govender, A., Bisetty, K., Singh, S., & Permaul, K. (2016). Cloning, expression, and molecular dynamics simulations of a xylosidase obtained from Thermomyces lanuginosus. Journal of Biomolecular Structure and Dynamics, 34(8), 1681–1692.

    Article  CAS  PubMed  Google Scholar 

  24. Hu, Q., Noll, R. J., Li, H., Makarov, A., Hardman, M., & Graham Cooks, R. (2005). The Orbitrap: a new mass spectrometer. Journal of mass spectrometry : JMS, 40(4), 430–443.

    Article  CAS  PubMed  Google Scholar 

  25. Gong, W., Zhang, H., Liu, S., Zhang, L., Gao, P., Chen, G., & Wang, L. (2015). Comparative secretome analysis of Aspergillus niger, Trichoderma reesei, and Penicillium oxalicum during solid-state fermentation. Applied Biochemistry and Biotechnology, 177(6), 1252–1271.

    Article  CAS  PubMed  Google Scholar 

  26. McHunu, N. P., Permaul, K., Abdul Rahman, A. Y., Saito, J. A., Singh, S. & Alam, M. (2013). Xylanase Superproducer: genome sequence of a compost-loving thermophilic fungus, Thermomyces lanuginosus Strain SSBP. Genome announcements, 1.

  27. Xing, S., Li, G., Sun, X., Ma, S., Chen, G., Wang, L., & Gao, P. (2013). Dynamic changes in xylanases and beta-1,4-endoglucanases secreted by Aspergillus niger An-76 in response to hydrolysates of lignocellulose polysaccharide. Applied Biochemistry and Biotechnology, 171, 832–846.

    Article  CAS  PubMed  Google Scholar 

  28. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248–254.

    Article  CAS  PubMed  Google Scholar 

  29. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426–428.

    Article  CAS  Google Scholar 

  30. Zhang, Q., Zhang, X., Wang, P., Li, D., Chen, G., Gao, P., & Wang, L. (2015). Determination of the action modes of cellulases from hydrolytic profiles over a time course using fluorescence-assisted carbohydrate electrophoresis. Electrophoresis, 36(6), 910–917.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang, Y. H. P., & Lynd, L. R. (2003). Cellodextrin preparation by mixed-acid hydrolysis and chromatographic separation. Analytical Biochemistry, 322(2), 225–232.

    Article  CAS  PubMed  Google Scholar 

  32. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680–685.

    Article  CAS  PubMed  Google Scholar 

  33. Zhang, X., Liu, N., Yang, F., Li, J., Wang, L., Chen, G., & Gao, P. (2012). In situ demonstration and quantitative analysis of the intrinsic properties of glycoside hydrolases. Electrophoresis, 33(2), 280–287.

    Article  CAS  PubMed  Google Scholar 

  34. Pan, D., Hill, A. P., Kashou, A., Wilson, K. A., & Tan-Wilson, A. (2011). Electrophoretic transfer protein zymography. Analytical Biochemistry, 411(2), 277–283.

    Article  CAS  PubMed  Google Scholar 

  35. Jiang, L., He, L., & Fountoulakis, M. (2004). Comparison of protein precipitation methods for sample preparation prior to proteomic analysis. Journal of Chromatography A, 1023(2), 317–320.

    Article  CAS  PubMed  Google Scholar 

  36. Méchin, V., Damerval, C., Zivy, M., Thiellement, H., Zivy, M., Damerval, C., & Méchin, V. (2007). Total protein extraction with TCA-acetone. In H. Thiellement (Ed.), Plant proteomics: methods and protocols (pp. 1–8). Totowa: Humana Press.

    Google Scholar 

  37. Zhou, J. Y., Schepmoes, A. A., Zhang, X., Moore, R. J., Monroe, M. E., Lee, J. H., Camp, D. G., Smith, R. D., & Qian, W.-J. (2010). Improved LC−MS/MS spectral counting statistics by recovering low-scoring spectra matched to confidently identified peptide sequences. Journal of Proteome Research, 9(11), 5698–5704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li, X. T., Jiang, Z. Q., Li, L. T., Yang, S. Q., Feng, W. Y., Fan, J. Y., & Kusakabe, I. (2005). Characterization of a cellulase-free, neutral xylanase from Thermomyces lanuginosus CBS 288.54 and its biobleaching effect on wheat straw pulp. Bioresource Technology, 96(12), 1370–1379.

    Article  CAS  PubMed  Google Scholar 

  39. Singh, S., Pillay, B., Dilsook, V., & Prior, B. A. (2000). Production and properties of hemicellulase by a Thermomyces lanuginosus strain. Journal of Applied Microbiology, 88(6), 975–982.

    Article  CAS  PubMed  Google Scholar 

  40. Munster, J. M., Daly, P., Delmas, S., Pullan, S. T., Blythe, M. J., Malla, S., Kokolski, M., Noltorp, E. C. M., Wennberg, K., Fetherston, R., Beniston, R., Yu, X. L., Dupree, P., & Archer, D. B. (2014). The role of carbon starvation in the induction of enzymes that degrade plant-derived carbohydrates in Aspergillus niger. Fungal Genetics and Biology, 72, 34–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Guillén, D., Sánchez, S., & Rodriguez-Sanoja, R. (2010). Carbohydrate-binding domains: multiplicity of biological roles. Applied Microbiology and Biotechnology, 85(5), 1241–1249.

    Article  CAS  PubMed  Google Scholar 

  42. Gong, W., Zhang, H., Tian, L., Liu, S., Wu, X., Li, F., & Wang, L. (2016). Determination of the modes of action and synergies of xylanases by analysis of xylooligosaccharide profiles over time using fluorescence-assisted carbohydrate electrophoresis. Electrophoresis, 37(12), 1640–1650.

    Article  CAS  PubMed  Google Scholar 

  43. Carvalho, A. F. A., Neto, P. d. O., da Silva, D. F., & Pastore, G. M. (2013). Xylo-oligosaccharides from lignocellulosic materials: chemical structure, health benefits and production by chemical and enzymatic hydrolysis. Food Research International, 51(1), 75–85.

    Article  CAS  Google Scholar 

  44. Wang, W., Mai-Gisondi, G., Stogios, P. J., Kaur, A., Xu, X., Cui, H., Turunen, O., Savchenko, A., & Mastera, E. R. (2014). Elucidation of the molecular basis for arabinoxylan-debranching activity of a thermostable family GH62 L-Arabinofuranosidase from Streptomyces thermoviolaceus. Applied and Environmental Microbiology, 80(17), 5317–5329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fukuda, M., Watanabe, S., Yoshida, S., Itoh, H., Itoh, Y., Kamio, Y., & Kaneko, J. (2010). Cell surface xylanases of the glycoside hydrolase family 10 are essential for xylan utilization by Paenibacillus sp. W-61 as generators of xylo-oligosaccharide inducers for the xylanase genes. Journal of Bacteriology, 192(8), 2210–2219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Miyazaki, K., Hirase, T., Kojima, Y., & Flint, H. J. (2005). Medium- to large-sized xylo-oligosaccharides are responsible for xylanase induction in Prevotella bryantii B14. Microbiology, 151(12), 4121–4125.

    Article  CAS  PubMed  Google Scholar 

  47. He, J., Han, G., & Chen, D. (2013). Insights into enzyme secretion by filamentous fungi: comparative proteome analysis of Trichoderma reesei grown on different carbon sources. Journal of Proteomics, 89, 191–201.

    Article  CAS  Google Scholar 

  48. Liu, D., Li, J., Zhao, S., Zhang, R., Wang, M., Miao, Y., Shen, Y., & Shen, Q. (2013). Secretome diversity and quantitative analysis of cellulolytic Aspergillus fumigatus Z5 in the presence of different carbon sources. Biotechnology for Biofuels, 6(1), 149–164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lu, X., Sun, J., Nimtz, M., Wissing, J., Zeng, A., & Rinas, U. (2010). The intra- and extracellular proteome of Aspergillus niger growing on defined medium with xylose or maltose as carbon substrate. Microbial Cell Factories, 9, 13.

    Article  CAS  Google Scholar 

  50. Xiong, H., Nyyssölä, A., Jänis, J., Pastinen, O., Weymarn, N., Leisola, M., & Turunen, O. (2004). Characterization of the xylanase produced by submerged cultivation of Thermomyces lanuginosus DSM 10635. Enzyme and Microbial Technology, 35(1), 93–99.

    Article  CAS  Google Scholar 

  51. Wu, X., Tian, Z., Jiang, X., Zhang, Q., & Wang, L. (2018). Enhancement in catalytic activity of Aspergillus niger XynB by selective site-directed mutagenesis of active site amino acids. Applied Microbiology and Biotechnology, 102(1), 249–260.

    Article  CAS  PubMed  Google Scholar 

  52. Wang, Y., Fu, Z., Huang, H., Zhang, H., Yao, B., Xiong, H., & Turunen, O. (2012). Improved thermal performance of Thermomyces lanuginosus GH11 xylanase by engineering of an N-terminal disulfide bridge. Bioresource Technology, 112, 275–279.

    Article  CAS  PubMed  Google Scholar 

  53. Damaso, M. C. T., Andrade, C. M. M. C., Pereira, N., Finkelstein, M., & Davison, B. H. (2000). Applied biochemistry and biotechnology. In M. Finkelstein & B. H. Davison (Eds.), Applied biochemistry and biotechnology (pp. 821–834). Totowa: Humana Press.

    Google Scholar 

  54. Girhammar, U., & Nair, B. M. (1992). Certain physical properties of water soluble non-starch polysaccharides from wheat, rye, triticale, barley and oats. Food Hydrocolloids, 6(4), 329–343.

    Article  CAS  Google Scholar 

  55. Lecerf, J. M., Depeint, F., Clerc, E., Dugenet, Y., Niamba, C. N., Rhazi, L., Cayzeele, A., Abdelnour, G., Jaruga, A., Younes, H., Jacobs, H., Lambrey, G., Abdelnour, A. M., & Pouillart, P. R. (2012). Xylo-oligosaccharide (XOS) in combination with inulin modulates both the intestinal environment and immune status in healthy subjects, while XOS alone only shows prebiotic properties. The British Journal of Nutrition, 108(10), 1847–1858.

    Article  CAS  PubMed  Google Scholar 

  56. Gong, W., Dai, L., Zhang, H., Zhang, L., & Wang, L. (2018). A highly efficient xylan-utilization system in Aspergillus niger An76: a functional-proteomics study. Frontiers in Microbiology, 9, 430.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Mariotti, M., Pagani, M. A., & Lucisano, M. (2013). The role of buckwheat and HPMC on the bread making properties of some commercial gluten-free bread mixtures. Food Hydrocolloids, 30(1), 393–400.

    Article  CAS  Google Scholar 

  58. Yuan, Q. P., Zhang, H., Qian, Z. M., & Yang, X. J. (2004). Pilot-plant production of xylo-oligosaccharides from corncob by steaming, enzymatic hydrolysis and nanofiltration. Journal of Chemical Technology & Biotechnology, 79(10), 1073–1079.

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by The National Natural Science Foundation of China (31770054), The National Key Research and Development Program of China (2016YFD0800601), and The Key Technologies R&D Program of Shandong Province (2015GSF121019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lushan Wang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

ESM 1

(DOCX 16660 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Z., Gong, W., Zhang, L. et al. Integrated Functional-Omics Analysis of Thermomyces lanuginosus Reveals its Potential for Simultaneous Production of Xylanase and Substituted Xylooligosaccharides. Appl Biochem Biotechnol 187, 1515–1538 (2019). https://doi.org/10.1007/s12010-018-2873-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-018-2873-5

Keywords

Navigation